Low-Light Image Enhancement (LLIE) has advanced with the surge in phone photography demand, yet many existing methods neglect compression, a crucial concern for resource-constrained phone photography. Most LLIE methods overlook this, hindering their effectiveness. In this study, we investigate the effects of JPEG compression on low-light images and reveal substantial information loss caused by JPEG due to widespread low pixel values in dark areas. Hence, we propose the Compression-Aware Pre-trained Transformer (CAPformer), employing a novel pre-training strategy to learn lossless information from uncompressed low-light images. Additionally, the proposed Brightness-Guided Self-Attention (BGSA) mechanism enhances rational information gathering. Experiments demonstrate the superiority of our approach in mitigating compression effects on LLIE, showcasing its potential for improving LLIE in resource-constrained scenarios.
Embeddings extracted by pre-trained Large Language Models (LLMs) have significant potential to improve information retrieval and search. Beyond the zero-shot setup in which they are being conventionally used, being able to take advantage of the information from the relevant query-corpus paired data can further boost the LLM capabilities. In this paper, we propose a novel method, Search-Adaptor, for customizing LLMs for information retrieval in an efficient and robust way. Search-Adaptor modifies the embeddings generated by pre-trained LLMs, and can be integrated with any LLM, including those only available via prediction APIs. On multiple English, multilingual, and multimodal retrieval datasets, we show consistent and significant performance benefits for Search-Adaptor -- e.g., more than 5% improvements for Google Embedding APIs in nDCG@10 averaged over 14 BEIR datasets.
The need to efficiently execute different Deep Neural Networks (DNNs) on the same computing platform, coupled with the requirement for easy scalability, makes Multi-Chip Module (MCM)-based accelerators a preferred design choice. Such an accelerator brings together heterogeneous sub-accelerators in the form of chiplets, interconnected by a Network-on-Package (NoP). This paper addresses the challenge of selecting the most suitable sub-accelerators, configuring them, determining their optimal placement in the NoP, and mapping the layers of a predetermined set of DNNs spatially and temporally. The objective is to minimise execution time and energy consumption during parallel execution while also minimising the overall cost, specifically the silicon area, of the accelerator. This paper presents MOHaM, a framework for multi-objective hardware-mapping co-optimisation for multi-DNN workloads on chiplet-based accelerators. MOHaM exploits a multi-objective evolutionary algorithm that has been specialised for the given problem by incorporating several customised genetic operators. MOHaM is evaluated against state-of-the-art Design Space Exploration (DSE) frameworks on different multi-DNN workload scenarios. The solutions discovered by MOHaM are Pareto optimal compared to those by the state-of-the-art. Specifically, MOHaM-generated accelerator designs can reduce latency by up to $96\%$ and energy by up to $96.12\%$.
Research on Multi-modal Large Language Models (MLLMs) towards the multi-image cross-modal instruction has received increasing attention and made significant progress, particularly in scenarios involving closely resembling images (e.g., change captioning). Existing MLLMs typically follow a two-step process in their pipelines: first, extracting visual tokens independently for each input image, and then aligning these visual tokens from different images with the Large Language Model (LLM) in its textual feature space. However, the independent extraction of visual tokens for each image may result in different semantics being prioritized for different images in the first step, leading to a lack of preservation of linking information among images for subsequent LLM analysis. This issue becomes more serious in scenarios where significant variations exist among the images (e.g., visual storytelling). To address this challenge, we introduce Semantic Alignment for Multi-modal large language models (SAM). By involving the bidirectional semantic guidance between different images in the visual-token extraction process, SAM aims to enhance the preservation of linking information for coherent analysis and align the semantics of different images before feeding them into LLM. As the test bed, we propose a large-scale dataset named MmLINK consisting of 69K samples. Different from most existing datasets for MLLMs fine-tuning, our MmLINK dataset comprises multi-modal instructions with significantly diverse images. Extensive experiments on the group captioning task and the storytelling task prove the effectiveness of our SAM model, surpassing the state-of-the-art methods by a large margin (+37% for group captioning and +22% for storytelling on CIDEr score). Project page: //mccartney01.github.io/SAM.
Graph Neural Networks (GNNs) are becoming increasingly popular for graph-based learning tasks such as point cloud processing due to their state-of-the-art (SOTA) performance. Nevertheless, the research community has primarily focused on improving model expressiveness, lacking consideration of how to design efficient GNN models for edge scenarios with real-time requirements and limited resources. Examining existing GNN models reveals varied execution across platforms and frequent Out-Of-Memory (OOM) problems, highlighting the need for hardware-aware GNN design. To address this challenge, this work proposes a novel hardware-aware graph neural architecture search framework tailored for resource constraint edge devices, namely HGNAS. To achieve hardware awareness, HGNAS integrates an efficient GNN hardware performance predictor that evaluates the latency and peak memory usage of GNNs in milliseconds. Meanwhile, we study GNN memory usage during inference and offer a peak memory estimation method, enhancing the robustness of architecture evaluations when combined with predictor outcomes. Furthermore, HGNAS constructs a fine-grained design space to enable the exploration of extreme performance architectures by decoupling the GNN paradigm. In addition, the multi-stage hierarchical search strategy is leveraged to facilitate the navigation of huge candidates, which can reduce the single search time to a few GPU hours. To the best of our knowledge, HGNAS is the first automated GNN design framework for edge devices, and also the first work to achieve hardware awareness of GNNs across different platforms. Extensive experiments across various applications and edge devices have proven the superiority of HGNAS. It can achieve up to a 10.6x speedup and an 82.5% peak memory reduction with negligible accuracy loss compared to DGCNN on ModelNet40.
Few-shot Named Entity Recognition (NER), the task of identifying named entities with only a limited amount of labeled data, has gained increasing significance in natural language processing. While existing methodologies have shown some effectiveness, such as enriching label semantics through various prompting modes or employing metric learning techniques, their performance exhibits limited robustness across diverse domains due to the lack of rich knowledge in their pre-trained models. To address this issue, we propose CLLMFS, a Contrastive Learning enhanced Large Language Model (LLM) Framework for Few-Shot Named Entity Recognition, achieving promising results with limited training data. Considering the impact of LLM's internal representations on downstream tasks, CLLMFS integrates Low-Rank Adaptation (LoRA) and contrastive learning mechanisms specifically tailored for few-shot NER. By enhancing the model's internal representations, CLLMFS effectively improves both entity boundary awareness ability and entity recognition accuracy. Our method has achieved state-of-the-art performance improvements on F1-score ranging from 2.58\% to 97.74\% over existing best-performing methods across several recognized benchmarks. Furthermore, through cross-domain NER experiments conducted on multiple datasets, we have further validated the robust generalization capability of our method. Our code will be released in the near future.
Underwater image enhancement (UIE) face significant challenges due to complex underwater lighting conditions. Recently, mamba-based methods have achieved promising results in image enhancement tasks. However, these methods commonly rely on Vmamba, which focuses only on spatial information modeling and struggles to deal with the cross-color channel dependency problem in underwater images caused by the differential attenuation of light wavelengths, limiting the effective use of deep networks. In this paper, we propose a novel UIE framework called O-mamba. O-mamba employs an O-shaped dual-branch network to separately model spatial and cross-channel information, utilizing the efficient global receptive field of state-space models optimized for underwater images. To enhance information interaction between the two branches and effectively utilize multi-scale information, we design a Multi-scale Bi-mutual Promotion Module. This branch includes MS-MoE for fusing multi-scale information within branches, Mutual Promotion module for interaction between spatial and channel information across branches, and Cyclic Multi-scale optimization strategy to maximize the use of multi-scale information. Extensive experiments demonstrate that our method achieves state-of-the-art (SOTA) results.The code is available at //github.com/chenydong/O-Mamba.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.