Few-shot Named Entity Recognition (NER), the task of identifying named entities with only a limited amount of labeled data, has gained increasing significance in natural language processing. While existing methodologies have shown some effectiveness, such as enriching label semantics through various prompting modes or employing metric learning techniques, their performance exhibits limited robustness across diverse domains due to the lack of rich knowledge in their pre-trained models. To address this issue, we propose CLLMFS, a Contrastive Learning enhanced Large Language Model (LLM) Framework for Few-Shot Named Entity Recognition, achieving promising results with limited training data. Considering the impact of LLM's internal representations on downstream tasks, CLLMFS integrates Low-Rank Adaptation (LoRA) and contrastive learning mechanisms specifically tailored for few-shot NER. By enhancing the model's internal representations, CLLMFS effectively improves both entity boundary awareness ability and entity recognition accuracy. Our method has achieved state-of-the-art performance improvements on F1-score ranging from 2.58\% to 97.74\% over existing best-performing methods across several recognized benchmarks. Furthermore, through cross-domain NER experiments conducted on multiple datasets, we have further validated the robust generalization capability of our method. Our code will be released in the near future.
Vision-Language Models (VLMs) have shown impressive performance in vision tasks, but adapting them to new domains often requires expensive fine-tuning. Prompt tuning techniques, including textual, visual, and multimodal prompting, offer efficient alternatives by leveraging learnable prompts. However, their application to Vision-Language Segmentation Models (VLSMs) and evaluation under significant domain shifts remain unexplored. This work presents an open-source benchmarking framework, TuneVLSeg, to integrate various unimodal and multimodal prompt tuning techniques into VLSMs, making prompt tuning usable for downstream segmentation datasets with any number of classes. TuneVLSeg includes $6$ prompt tuning strategies on various prompt depths used in $2$ VLSMs totaling of $8$ different combinations. We test various prompt tuning on $8$ diverse medical datasets, including $3$ radiology datasets (breast tumor, echocardiograph, chest X-ray pathologies) and $5$ non-radiology datasets (polyp, ulcer, skin cancer), and two natural domain segmentation datasets. Our study found that textual prompt tuning struggles under significant domain shifts, from natural-domain images to medical data. Furthermore, visual prompt tuning, with fewer hyperparameters than multimodal prompt tuning, often achieves performance competitive to multimodal approaches, making it a valuable first attempt. Our work advances the understanding and applicability of different prompt-tuning techniques for robust domain-specific segmentation. The source code is available at //github.com/naamiinepal/tunevlseg.
Context lengths of Large Language Models (LLMs) have exploded in recent years, with 128k-token context becoming a standard and million-token context becoming a reality. Efficiently supporting long-context inference remains challenging as the memory that must be allocated in key-value (KV) cache for a generation scales with its context length, limiting the number of long-context requests that can be served concurrently under a given memory budget. KV cache compression can mitigate this issue by removing under-utilized KVs from each attention head's cache and reducing its memory footprint. Higher theoretical compression rates can be achieved when the number of removed KVs varies across attention heads, but application of such a strategy within existing inference frameworks adds fragmentation and cannot realize the theoretical compression rates in physical memory. We introduce KV-Compress, a novel compression method that evicts contiguous KV blocks within a PagedAttention framework, reducing the memory footprint of the KV cache proportionally to this theoretical compression rate. Our method achieves state-of-the-art performance on LongBench for both Mistral-7B-Instruct-v0.2 and Llama-3.1-8B-Instruct while lowering the total number of compressed KVs by 4x compared with prior methods. Evaluations on Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct-FP8 achieve compression rates up to 8x with negligible impact on performance, and up to 64x while retaining over 90% of full-cache performance for all but three of the suite's subsets. We benchmark an integration of our method with vLLM that increases total throughput by up to 5.18x by enabling larger decoding batches.
We introduce ComplexTempQA, a large-scale dataset consisting of over 100 million question-answer pairs designed to tackle the challenges in temporal question answering. ComplexTempQA significantly surpasses existing benchmarks like HOTPOTQA, TORQUE, and TEQUILA in scale and scope. Utilizing data from Wikipedia and Wikidata, the dataset covers questions spanning over two decades and offers an unmatched breadth of topics. We introduce a unique taxonomy that categorizes questions as attributes, comparisons, and counting questions, each revolving around events, entities, and time periods. One standout feature of ComplexTempQA is the high complexity of its questions, which demand effective capabilities for answering such as across-time comparison, temporal aggregation, and multi-hop reasoning involving temporal event ordering and entity recognition. Additionally, each question is accompanied by detailed metadata, including specific time scopes, allowing for comprehensive evaluation and enhancement of the temporal reasoning abilities of large language models. ComplexTempQA serves both as a testing ground for developing sophisticated AI models and as a foundation for advancing research in question answering, information retrieval, and language understanding.
One-Shot Federated Learning (OSFL), a special decentralized machine learning paradigm, has recently gained significant attention. OSFL requires only a single round of client data or model upload, which reduces communication costs and mitigates privacy threats compared to traditional FL. Despite these promising prospects, existing methods face challenges due to client data heterogeneity and limited data quantity when applied to real-world OSFL systems. Recently, Latent Diffusion Models (LDM) have shown remarkable advancements in synthesizing high-quality images through pretraining on large-scale datasets, thereby presenting a potential solution to overcome these issues. However, directly applying pretrained LDM to heterogeneous OSFL results in significant distribution shifts in synthetic data, leading to performance degradation in classification models trained on such data. This issue is particularly pronounced in rare domains, such as medical imaging, which are underrepresented in LDM's pretraining data. To address this challenge, we propose Federated Bi-Level Personalization (FedBiP), which personalizes the pretrained LDM at both instance-level and concept-level. Hereby, FedBiP synthesizes images following the client's local data distribution without compromising the privacy regulations. FedBiP is also the first approach to simultaneously address feature space heterogeneity and client data scarcity in OSFL. Our method is validated through extensive experiments on three OSFL benchmarks with feature space heterogeneity, as well as on challenging medical and satellite image datasets with label heterogeneity. The results demonstrate the effectiveness of FedBiP, which substantially outperforms other OSFL methods.
Generalized additive models (GAMs) have long been a powerful white-box tool for the intelligible analysis of tabular data, revealing the influence of each feature on the model predictions. Despite the success of neural networks (NNs) in various domains, their application as NN-based GAMs in tabular data analysis remains suboptimal compared to tree-based ones, and the opacity of encoders in NN-GAMs also prevents users from understanding how networks learn the functions. In this work, we propose a new deep tabular learning method, termed Prototypical Neural Additive Model (ProtoNAM), which introduces prototypes into neural networks in the framework of GAMs. With the introduced prototype-based feature activation, ProtoNAM can flexibly model the irregular mapping from tabular features to the outputs while maintaining the explainability of the final prediction. We also propose a gradient-boosting inspired hierarchical shape function modeling method, facilitating the discovery of complex feature patterns and bringing transparency into the learning process of each network layer. Our empirical evaluations demonstrate that ProtoNAM outperforms all existing NN-based GAMs, while providing additional insights into the shape function learned for each feature. The source code of ProtoNAM is available at \url{//github.com/Teddy-XiongGZ/ProtoNAM}.
Multimodal Sentiment Analysis (MSA) utilizes multimodal data to infer the users' sentiment. Previous methods focus on equally treating the contribution of each modality or statically using text as the dominant modality to conduct interaction, which neglects the situation where each modality may become dominant. In this paper, we propose a Knowledge-Guided Dynamic Modality Attention Fusion Framework (KuDA) for multimodal sentiment analysis. KuDA uses sentiment knowledge to guide the model dynamically selecting the dominant modality and adjusting the contributions of each modality. In addition, with the obtained multimodal representation, the model can further highlight the contribution of dominant modality through the correlation evaluation loss. Extensive experiments on four MSA benchmark datasets indicate that KuDA achieves state-of-the-art performance and is able to adapt to different scenarios of dominant modality.
Dynamic grasping of moving objects in complex, continuous motion scenarios remains challenging. Reinforcement Learning (RL) has been applied in various robotic manipulation tasks, benefiting from its closed-loop property. However, existing RL-based methods do not fully explore the potential for enhancing visual representations. In this letter, we propose a novel framework called Grasps As Points for RL (GAP-RL) to effectively and reliably grasp moving objects. By implementing a fast region-based grasp detector, we build a Grasp Encoder by transforming 6D grasp poses into Gaussian points and extracting grasp features as a higher-level abstraction than the original object point features. Additionally, we develop a Graspable Region Explorer for real-world deployment, which searches for consistent graspable regions, enabling smoother grasp generation and stable policy execution. To assess the performance fairly, we construct a simulated dynamic grasping benchmark involving objects with various complex motions. Experiment results demonstrate that our method effectively generalizes to novel objects and unseen dynamic motions compared to other baselines. Real-world experiments further validate the framework's sim-to-real transferability.
Recently, State Space Models (SSMs) with efficient hardware-aware designs, i.e., Mamba, have demonstrated significant potential in computer vision tasks due to their linear computational complexity with respect to token length and their global receptive field. However, Mamba's performance on dense prediction tasks, including human pose estimation and semantic segmentation, has been constrained by three key challenges: insufficient inductive bias, long-range forgetting, and low-resolution output representation. To address these challenges, we introduce the Dynamic Visual State Space (DVSS) block, which utilizes multi-scale convolutional kernels to extract local features across different scales and enhance inductive bias, and employs deformable convolution to mitigate the long-range forgetting problem while enabling adaptive spatial aggregation based on input and task-specific information. By leveraging the multi-resolution parallel design proposed in HRNet, we introduce High-Resolution Visual State Space Model (HRVMamba) based on the DVSS block, which preserves high-resolution representations throughout the entire process while promoting effective multi-scale feature learning. Extensive experiments highlight HRVMamba's impressive performance on dense prediction tasks, achieving competitive results against existing benchmark models without bells and whistles. Code is available at //github.com/zhanghao5201/HRVMamba.
LLMs with visual inputs, i.e., Vision Language Models (VLMs), have the capacity to process state information as visual-textual prompts and respond with policy decisions in text. We propose LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as conversations and provides improved action outputs when trained with auxiliary data that complements policy learning. We first introduce an automated pipeline to generate conversation-style instruction tuning data from existing behavior cloning data. Then we enrich the dataset in a self-supervised fashion by formulating six auxiliary tasks. A VLM finetuned with the resulting collection of datasets can generate meaningful robot action policy decisions. Our experiments across multiple simulated and real-world environments demonstrate the state-of-the-art performance of the proposed LLaRA framework. The code, datasets, and pretrained models are available at //github.com/LostXine/LLaRA.
Recently, Self-Supervised Representation Learning (SSRL) has attracted much attention in the field of computer vision, speech, natural language processing (NLP), and recently, with other types of modalities, including time series from sensors. The popularity of self-supervised learning is driven by the fact that traditional models typically require a huge amount of well-annotated data for training. Acquiring annotated data can be a difficult and costly process. Self-supervised methods have been introduced to improve the efficiency of training data through discriminative pre-training of models using supervisory signals that have been freely obtained from the raw data. Unlike existing reviews of SSRL that have pre-dominately focused upon methods in the fields of CV or NLP for a single modality, we aim to provide the first comprehensive review of multimodal self-supervised learning methods for temporal data. To this end, we 1) provide a comprehensive categorization of existing SSRL methods, 2) introduce a generic pipeline by defining the key components of a SSRL framework, 3) compare existing models in terms of their objective function, network architecture and potential applications, and 4) review existing multimodal techniques in each category and various modalities. Finally, we present existing weaknesses and future opportunities. We believe our work develops a perspective on the requirements of SSRL in domains that utilise multimodal and/or temporal data