亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To estimate causal effects, analysts performing observational studies in health settings utilize several strategies to mitigate bias due to confounding by indication. There are two broad classes of approaches for these purposes: use of confounders and instrumental variables (IVs). Because such approaches are largely characterized by untestable assumptions, analysts must operate under an indefinite paradigm that these methods will work imperfectly. In this tutorial, we formalize a set of general principles and heuristics for estimating causal effects in the two approaches when the assumptions are potentially violated. This crucially requires reframing the process of observational studies as hypothesizing potential scenarios where the estimates from one approach are less inconsistent than the other. While most of our discussion of methodology centers around the linear setting, we touch upon complexities in non-linear settings and flexible procedures such as target minimum loss-based estimation (TMLE) and double machine learning (DML). To demonstrate the application of our principles, we investigate the use of donepezil off-label for mild cognitive impairment (MCI). We compare and contrast results from confounder and IV methods, traditional and flexible, within our analysis and to a similar observational study and clinical trial.

相關內容

We study the problem of learning with selectively labeled data, which arises when outcomes are only partially labeled due to historical decision-making. The labeled data distribution may substantially differ from the full population, especially when the historical decisions and the target outcome can be simultaneously affected by some unobserved factors. Consequently, learning with only the labeled data may lead to severely biased results when deployed to the full population. Our paper tackles this challenge by exploiting the fact that in many applications the historical decisions were made by a set of heterogeneous decision-makers. In particular, we analyze this setup in a principled instrumental variable (IV) framework. We establish conditions for the full-population risk of any given prediction rule to be point-identified from the observed data and provide sharp risk bounds when the point identification fails. We further propose a weighted learning approach that learns prediction rules robust to the label selection bias in both identification settings. Finally, we apply our proposed approach to a semi-synthetic financial dataset and demonstrate its superior performance in the presence of selection bias.

We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.

Inferring causal effects of continuous-valued treatments from observational data is a crucial task promising to better inform policy- and decision-makers. A critical assumption needed to identify these effects is that all confounding variables -- causal parents of both the treatment and the outcome -- are included as covariates. Unfortunately, given observational data alone, we cannot know with certainty that this criterion is satisfied. Sensitivity analyses provide principled ways to give bounds on causal estimates when confounding variables are hidden. While much attention is focused on sensitivity analyses for discrete-valued treatments, much less is paid to continuous-valued treatments. We present novel methodology to bound both average and conditional average continuous-valued treatment-effect estimates when they cannot be point identified due to hidden confounding. A semi-synthetic benchmark on multiple datasets shows our method giving tighter coverage of the true dose-response curve than a recently proposed continuous sensitivity model and baselines. Finally, we apply our method to a real-world observational case study to demonstrate the value of identifying dose-dependent causal effects.

Discovering causal relationships from observational data is a challenging task that relies on assumptions connecting statistical quantities to graphical or algebraic causal models. In this work, we focus on widely employed assumptions for causal discovery when objects of interest are (multivariate) groups of random variables rather than individual (univariate) random variables, as is the case in a variety of problems in scientific domains such as climate science or neuroscience. If the group-level causal models are derived from partitioning a micro-level model into groups, we explore the relationship between micro and group-level causal discovery assumptions. We investigate the conditions under which assumptions like Causal Faithfulness hold or fail to hold. Our analysis encompasses graphical causal models that contain cycles and bidirected edges. We also discuss grouped time series causal graphs and variants thereof as special cases of our general theoretical framework. Thereby, we aim to provide researchers with a solid theoretical foundation for the development and application of causal discovery methods for variable groups.

This study demonstrates the existence of a testable condition for the identification of the causal effect of a treatment on an outcome in observational data, which relies on two sets of variables: observed covariates to be controlled for and a suspected instrument. Under a causal structure commonly found in empirical applications, the testable conditional independence of the suspected instrument and the outcome given the treatment and the covariates has two implications. First, the instrument is valid, i.e. it does not directly affect the outcome (other than through the treatment) and is unconfounded conditional on the covariates. Second, the treatment is unconfounded conditional on the covariates such that the treatment effect is identified. We suggest tests of this conditional independence based on machine learning methods that account for covariates in a data-driven way and investigate their asymptotic behavior and finite sample performance in a simulation study. We also apply our testing approach to evaluating the impact of fertility on female labor supply when using the sibling sex ratio of the first two children as supposed instrument, which by and large points to a violation of our testable implication for the moderate set of socio-economic covariates considered.

We consider the problem of estimating the causal effect of a treatment on an outcome in linear structural causal models (SCM) with latent confounders when we have access to a single proxy variable. Several methods (such as difference-in-difference (DiD) estimator or negative outcome control) have been proposed in this setting in the literature. However, these approaches require either restrictive assumptions on the data generating model or having access to at least two proxy variables. We propose a method to estimate the causal effect using cross moments between the treatment, the outcome, and the proxy variable. In particular, we show that the causal effect can be identified with simple arithmetic operations on the cross moments if the latent confounder in linear SCM is non-Gaussian. In this setting, DiD estimator provides an unbiased estimate only in the special case where the latent confounder has exactly the same direct causal effects on the outcomes in the pre-treatment and post-treatment phases. This translates to the common trend assumption in DiD, which we effectively relax. Additionally, we provide an impossibility result that shows the causal effect cannot be identified if the observational distribution over the treatment, the outcome, and the proxy is jointly Gaussian. Our experiments on both synthetic and real-world datasets showcase the effectiveness of the proposed approach in estimating the causal effect.

Deep reinforcement learning (DRL) requires the collection of interventional data, which is sometimes expensive and even unethical in the real world, such as in the autonomous driving and the medical field. Offline reinforcement learning promises to alleviate this issue by exploiting the vast amount of observational data available in the real world. However, observational data may mislead the learning agent to undesirable outcomes if the behavior policy that generates the data depends on unobserved random variables (i.e., confounders). In this paper, we propose two deconfounding methods in DRL to address this problem. The methods first calculate the importance degree of different samples based on the causal inference technique, and then adjust the impact of different samples on the loss function by reweighting or resampling the offline dataset to ensure its unbiasedness. These deconfounding methods can be flexibly combined with existing model-free DRL algorithms such as soft actor-critic and deep Q-learning, provided that a weak condition can be satisfied by the loss functions of these algorithms. We prove the effectiveness of our deconfounding methods and validate them experimentally.

We study causal effect estimation from a mixture of observational and interventional data in a confounded linear regression model with multivariate treatments. We show that the statistical efficiency in terms of expected squared error can be improved by combining estimators arising from both the observational and interventional setting. To this end, we derive methods based on matrix weighted linear estimators and prove that our methods are asymptotically unbiased in the infinite sample limit. This is an important improvement compared to the pooled estimator using the union of interventional and observational data, for which the bias only vanishes if the ratio of observational to interventional data tends to zero. Studies on synthetic data confirm our theoretical findings. In settings where confounding is substantial and the ratio of observational to interventional data is large, our estimators outperform a Stein-type estimator and various other baselines.

Understanding causality should be a core requirement of any attempt to build real impact through AI. Due to the inherent unobservability of counterfactuals, large randomised trials (RCTs) are the standard for causal inference. But large experiments are generically expensive, and randomisation carries its own costs, e.g. when suboptimal decisions are trialed. Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought. In this work, we develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications. Across a range of important tasks, real-world datasets, and sample sizes, our method outperforms other benchmarks, e.g. requiring an order-of-magnitude less data to match RCT performance on targeted marketing tasks.

Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.

北京阿比特科技有限公司