亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Research in 3D semantic segmentation has been increasing performance metrics, like the IoU, by scaling model complexity and computational resources, leaving behind researchers and practitioners that (1) cannot access the necessary resources and (2) do need transparency on the model decision mechanisms. In this paper, we propose SCENE-Net, a low-resource white-box model for 3D point cloud semantic segmentation. SCENE-Net identifies signature shapes on the point cloud via group equivariant non-expansive operators (GENEOs), providing intrinsic geometric interpretability. Our training time on a laptop is 85~min, and our inference time is 20~ms. SCENE-Net has 11 trainable geometrical parameters and requires fewer data than black-box models. SCENE--Net offers robustness to noisy labeling and data imbalance and has comparable IoU to state-of-the-art methods. With this paper, we release a 40~000 Km labeled dataset of rural terrain point clouds and our code implementation.

相關內容

根據激光測量原理得到的點云,包括三維坐標(XYZ)和激光反射強度(Intensity)。 根據攝影測量原理得到的點云,包括三維坐標(XYZ)和顏色信息(RGB)。 結合激光測量和攝影測量原理得到點云,包括三維坐標(XYZ)、激光反射強度(Intensity)和顏色信息(RGB)。 在獲取物體表面每個采樣點的空間坐標后,得到的是一個點的集合,稱之為“點云”(Point Cloud)

While very popular for evaluating extractive summarization task, the ROUGE metric has long been criticized for its lack of semantic awareness and its ignorance about the ranking quality of the summarizer. Thanks to previous research that has addressed these issues by proposing a gain-based automated metric called Sem-nCG, which is both rank and semantic aware. However, Sem-nCG does not consider the amount of redundancy present in a model-generated summary and currently does not support evaluation with multiple reference summaries. Unfortunately, addressing both these limitations simultaneously is not trivial. Therefore, in this paper, we propose a redundancy-aware Sem-nCG metric and demonstrate how this new metric can be used to evaluate model summaries against multiple references. We also explore different ways of incorporating redundancy into the original metric through extensive experiments. Experimental results demonstrate that the new redundancy-aware metric exhibits a higher correlation with human judgments than the original Sem-nCG metric for both single and multiple reference scenarios.

Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is $\leq k$ for some constant $k$. We also show how our results translate to fractional vertex covers.

While sentence simplification is an active research topic in NLP, its adjacent tasks of sentence complexification and same-level paraphrasing are not. To train models on all three tasks, we present two new unsupervised datasets. We compare these datasets, one labeled by a weak classifier and the other by a rule-based approach, with a single supervised dataset. Using these three datasets for training, we perform extensive experiments on both multitasking and prompting strategies. Compared to other systems trained on unsupervised parallel data, models trained on our weak classifier labeled dataset achieve state-of-the-art performance on the ASSET simplification benchmark. Our models also outperform previous work on sentence level targeting. Finally, we establish how a handful of Large Language Models perform on these tasks under a zero-shot setting.

Automatic synthesis of analog and Radio Frequency (RF) circuits is a trending approach that requires an efficient circuit modeling method. This is due to the expensive cost of running a large number of simulations at each synthesis cycle. Artificial intelligence methods are promising approaches for circuit modeling due to their speed and relative accuracy. However, existing approaches require a large amount of training data, which is still collected using simulation runs. In addition, such approaches collect a whole separate dataset for each circuit topology even if a single element is added or removed. These matters are only exacerbated by the need for post-layout modeling simulations, which take even longer. To alleviate these drawbacks, in this paper, we present FuNToM, a functional modeling method for RF circuits. FuNToM leverages the two-port analysis method for modeling multiple topologies using a single main dataset and multiple small datasets. It also leverages neural networks which have shown promising results in predicting the behavior of circuits. Our results show that for multiple RF circuits, in comparison to the state-of-the-art works, while maintaining the same accuracy, the required training data is reduced by 2.8x - 10.9x. In addition, FuNToM needs 176.8x - 188.6x less time for collecting the training set in post-layout modeling.

Seese's conjecture for finite graphs states that monadic second-order logic (MSO) is undecidable on all graph classes of unbounded clique-width. We show that to establish this it would suffice to show that grids of unbounded size can be interpreted in two families of graph classes: minimal hereditary classes of unbounded clique-width; and antichains of unbounded clique-width under the induced subgraph relation. We explore all the currently known classes of the former category and establish that grids of unbounded size can indeed be interpreted in them.

The diffusion model is capable of generating high-quality data through a probabilistic approach. However, it suffers from the drawback of slow generation speed due to the requirement of a large number of time steps. To address this limitation, recent models such as denoising diffusion implicit models (DDIM) focus on generating samples without directly modeling the probability distribution, while models like denoising diffusion generative adversarial networks (GAN) combine diffusion processes with GANs. In the field of speech synthesis, a recent diffusion speech synthesis model called DiffGAN-TTS, utilizing the structure of GANs, has been introduced and demonstrates superior performance in both speech quality and generation speed. In this paper, to further enhance the performance of DiffGAN-TTS, we propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data. Objective metrics such as structural similarity index measure (SSIM), mel-cepstral distortion (MCD), F0 root mean squared error (F0 RMSE), short-time objective intelligibility (STOI), perceptual evaluation of speech quality (PESQ), as well as subjective metrics like mean opinion score (MOS), are used to evaluate the performance of the proposed model. The evaluation results show that the proposed model outperforms recent state-of-the-art models such as FastSpeech2 and DiffGAN-TTS in various metrics. Our implementation and audio samples are located on GitHub.

Causal probabilistic graph-based models have gained widespread utility, enabling the modeling of cause-and-effect relationships across diverse domains. With their rising adoption in new areas, such as automotive system safety and machine learning, the need for an integrated lifecycle framework akin to DevOps and MLOps has emerged. Currently, a process reference for organizations interested in employing causal engineering is missing. To address this gap and foster widespread industrial adoption, we propose CausalOps, a novel lifecycle framework for causal model development and application. By defining key entities, dependencies, and intermediate artifacts generated during causal engineering, we establish a consistent vocabulary and workflow model. This work contextualizes causal model usage across different stages and stakeholders, outlining a holistic view of creating and maintaining them. CausalOps' aim is to drive the adoption of causal methods in practical applications within interested organizations and the causality community.

Energy optimization leveraging artificially intelligent algorithms has been proven effective. However, when buildings are commissioned, there is no historical data that could be used to train these algorithms. On-line Reinforcement Learning (RL) algorithms have shown significant promise, but their deployment carries a significant risk, because as the RL agent initially explores its action space it could cause significant discomfort to the building residents. In this paper we present ReLBOT - a new technique that uses transfer learning in conjunction with deep RL to transfer knowledge from an existing, optimized and instrumented building, to the newly commissioning smart building, to reduce the adverse impact of the reinforcement learning agent's warm-up period. We demonstrate improvements of up to 6.2 times in the duration, and up to 132 times in prediction variance, for the reinforcement learning agent's warm-up period.

We present SEIF, a methodology that combines static analysis with symbolic execution to verify and explicate information flow paths in a hardware design. SEIF begins with a statically built model of the information flow through a design and uses guided symbolic execution to recognize and eliminate non-flows with high precision or to find corresponding paths through the design state for true flows. We evaluate SEIF on two open-source CPUs, an AES core, and the AKER access control module. SEIF can exhaustively explore 10-12 clock cycles deep in 4-6 seconds on average, and can automatically account for 86-90% of the paths in the statically built model. Additionally, SEIF can be used to find multiple violating paths for security properties, providing a new angle for security verification.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司