亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we propose and computationally investigate a monolithic space-time multirate scheme for coupled problems. The novelty lies in the monolithic formulation of the multirate approach as this requires a careful design of the functional framework, corresponding discretization, and implementation. Our method of choice is a tensor-product Galerkin space-time discretization. The developments are carried out for both prototype interface- and volume coupled problems such as coupled wave-heat-problems and a displacement equation coupled to Darcy flow in a poro-elastic medium. The latter is applied to the well-known Mandel's benchmark. Detailed computational investigations and convergence analyses give evidence that our monolithic multirate framework performs well.

相關內容

This work aims to explore the community structure of Santiago de Chile by analyzing the movement patterns of its residents. We use a dataset containing the approximate locations of home and work places for a subset of anonymized residents to construct a network that represents the movement patterns within the city. Through the analysis of this network, we aim to identify the communities or sub-cities that exist within Santiago de Chile and gain insights into the factors that drive the spatial organization of the city. We employ modularity optimization algorithms and clustering techniques to identify the communities within the network. Our results present that the novelty of combining community detection algorithms with segregation tools provides new insights to further the understanding of the complex geography of segregation during working hours.

We revisit a graph width parameter that we dub bipartite treewidth, along with its associated graph decomposition that we call bipartite tree decomposition. Bipartite treewidth can be seen as a common generalization of treewidth and the odd cycle transversal number. Intuitively, a bipartite tree decomposition is a tree decomposition whose bags induce almost bipartite graphs and whose adhesions contain at most one vertex from the bipartite part of any other bag, while the width of such decomposition measures how far the bags are from being bipartite. Adapted from a tree decomposition originally defined by Demaine, Hajiaghayi, and Kawarabayashi [SODA 2010] and explicitly defined by Tazari [Th. Comp. Sci. 2012], bipartite treewidth appears to play a crucial role for solving problems related to odd-minors, which have recently attracted considerable attention. As a first step toward a theory for solving these problems efficiently, the main goal of this paper is to develop dynamic programming techniques to solve problems on graphs of small bipartite treewidth. For such graphs, we provide a number of para-NP-completeness results, FPT-algorithms, and XP-algorithms, as well as several open problems. In particular, we show that $K_t$-Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and Maximum Weighted Cut are $FPT$ parameterized by bipartite treewidth. We provide the following complexity dichotomy when $H$ is a 2-connected graph, for each of $H$-Subgraph-Packing, $H$-Induced-Packing, $H$-Scattered-Packing, and $H$-Odd-Minor-Packing problem: if $H$ is bipartite, then the problem is para-NP-complete parameterized by bipartite treewidth while, if $H$ is non-bipartite, then it is solvable in XP-time. We define 1-${\cal H}$-treewidth by replacing the bipartite graph class by any class ${\cal H}$. Most of the technology developed here works for this more general parameter.

Quantum computing is a growing field where the information is processed by two-levels quantum states known as qubits. Current physical realizations of qubits require a careful calibration, composed by different experiments, due to noise and decoherence phenomena. Among the different characterization experiments, a crucial step is to develop a model to classify the measured state by discriminating the ground state from the excited state. In this proceedings we benchmark multiple classification techniques applied to real quantum devices.

Inverse problems are inherently ill-posed and therefore require regularization techniques to achieve a stable solution. While traditional variational methods have well-established theoretical foundations, recent advances in machine learning based approaches have shown remarkable practical performance. However, the theoretical foundations of learning-based methods in the context of regularization are still underexplored. In this paper, we propose a general framework that addresses the current gap between learning-based methods and regularization strategies. In particular, our approach emphasizes the crucial role of data consistency in the solution of inverse problems and introduces the concept of data-proximal null-space networks as a key component for their solution. We provide a complete convergence analysis by extending the concept of regularizing null-space networks with data proximity in the visual part. We present numerical results for limited-view computed tomography to illustrate the validity of our framework.

In this paper, new unfitted mixed finite elements are presented for elliptic interface problems with jump coefficients. Our model is based on a fictitious domain formulation with distributed Lagrange multiplier. The relevance of our investigations is better seen when applied to the framework of fluid structure interaction problems. Two finite elements schemes with piecewise constant Lagrange multiplier are proposed and their stability is proved theoretically. Numerical results compare the performance of those elements, confirming the theoretical proofs and verifying that the schemes converge with optimal rate.

ASR systems have become increasingly widespread in recent years. However, their textual outputs often require post-processing tasks before they can be practically utilized. To address this issue, we draw inspiration from the multifaceted capabilities of LLMs and Whisper, and focus on integrating multiple ASR text processing tasks related to speech recognition into the ASR model. This integration not only shortens the multi-stage pipeline, but also prevents the propagation of cascading errors, resulting in direct generation of post-processed text. In this study, we focus on ASR-related processing tasks, including Contextual ASR and multiple ASR post processing tasks. To achieve this objective, we introduce the CPPF model, which offers a versatile and highly effective alternative to ASR processing. CPPF seamlessly integrates these tasks without any significant loss in recognition performance.

Condensed mathematics, developed by Clausen and Scholze over the last few years, is a new way of studying the interplay between algebra and geometry. It replaces the concept of a topological space by a more sophisticated but better-behaved idea, namely that of a condensed set. Central to the theory are solid abelian groups and liquid vector spaces, analogues of complete topological groups. N\"obeling's theorem, a surprising result from the 1960s about the structure of the abelian group of continuous maps from a profinite space to the integers, is a crucial ingredient in the theory of solid abelian groups; without it one cannot give any nonzero examples of solid abelian groups. We discuss a recently completed formalisation of this result in the Lean theorem prover, and give a more detailed proof than those previously available in the literature. The proof is somewhat unusual in that it requires induction over ordinals -- a technique which has not previously been used to a great extent in formalised mathematics.

We present a learning based framework for mesh quality improvement on unstructured triangular and quadrilateral meshes. Our model learns to improve mesh quality according to a prescribed objective function purely via self-play reinforcement learning with no prior heuristics. The actions performed on the mesh are standard local and global element operations. The goal is to minimize the deviation of the node degrees from their ideal values, which in the case of interior vertices leads to a minimization of irregular nodes.

In this paper, we are interested in constructing a scheme solving compressible Navier--Stokes equations, with desired properties including high order spatial accuracy, conservation, and positivity-preserving of density and internal energy under a standard hyperbolic type CFL constraint on the time step size, e.g., $\Delta t=\mathcal O(\Delta x)$. Strang splitting is used to approximate convection and diffusion operators separately. For the convection part, i.e., the compressible Euler equation, the high order accurate postivity-preserving Runge--Kutta discontinuous Galerkin method can be used. For the diffusion part, the equation of internal energy instead of the total energy is considered, and a first order semi-implicit time discretization is used for the ease of achieving positivity. A suitable interior penalty discontinuous Galerkin method for the stress tensor can ensure the conservation of momentum and total energy for any high order polynomial basis. In particular, positivity can be proven with $\Delta t=\mathcal{O}(\Delta x)$ if the Laplacian operator of internal energy is approximated by the $\mathbb{Q}^k$ spectral element method with $k=1,2,3$. So the full scheme with $\mathbb{Q}^k$ ($k=1,2,3$) basis is conservative and positivity-preserving with $\Delta t=\mathcal{O}(\Delta x)$, which is robust for demanding problems such as solutions with low density and low pressure induced by high-speed shock diffraction. Even though the full scheme is only first order accurate in time, numerical tests indicate that higher order polynomial basis produces much better numerical solutions, e.g., better resolution for capturing the roll-ups during shock reflection.

In this paper we present an abstract nonsmooth optimization problem for which we recall existence and uniqueness results. We show a numerical scheme to approximate its solution. The theory is later applied to a sample static contact problem describing an elastic body in frictional contact with a foundation. This problem leads to a hemivariational inequality which we solve numerically. Finally, we compare three computational methods of solving contact mechanical problems: direct optimization method, augmented Lagrangian method and primal-dual active set strategy.

北京阿比特科技有限公司