In this paper, we are interested in constructing a scheme solving compressible Navier--Stokes equations, with desired properties including high order spatial accuracy, conservation, and positivity-preserving of density and internal energy under a standard hyperbolic type CFL constraint on the time step size, e.g., $\Delta t=\mathcal O(\Delta x)$. Strang splitting is used to approximate convection and diffusion operators separately. For the convection part, i.e., the compressible Euler equation, the high order accurate postivity-preserving Runge--Kutta discontinuous Galerkin method can be used. For the diffusion part, the equation of internal energy instead of the total energy is considered, and a first order semi-implicit time discretization is used for the ease of achieving positivity. A suitable interior penalty discontinuous Galerkin method for the stress tensor can ensure the conservation of momentum and total energy for any high order polynomial basis. In particular, positivity can be proven with $\Delta t=\mathcal{O}(\Delta x)$ if the Laplacian operator of internal energy is approximated by the $\mathbb{Q}^k$ spectral element method with $k=1,2,3$. So the full scheme with $\mathbb{Q}^k$ ($k=1,2,3$) basis is conservative and positivity-preserving with $\Delta t=\mathcal{O}(\Delta x)$, which is robust for demanding problems such as solutions with low density and low pressure induced by high-speed shock diffraction. Even though the full scheme is only first order accurate in time, numerical tests indicate that higher order polynomial basis produces much better numerical solutions, e.g., better resolution for capturing the roll-ups during shock reflection.
We review recent results on the connection between Hermite-Pad\'e approximation problem, multiple orthogonal polynomials, and multidimensional Toda equations in continuous and discrete time. In order to motivate interest in the subject we first present a pedagogical introduction to the classical, by now, relation between the Pad\'e approximation problem, orthogonal polynomials, and the Toda lattice equations. We describe also briefly generalization of the connection to the interpolation problems and to the non-commutative algebra level.
In this paper we consider PIDEs with gradient-independent Lipschitz continuous nonlinearities and prove that deep neural networks with ReLU activation function can approximate solutions of such semilinear PIDEs without curse of dimensionality in the sense that the required number of parameters in the deep neural networks increases at most polynomially in both the dimension $ d $ of the corresponding PIDE and the reciprocal of the prescribed accuracy $\epsilon $.
This paper will suggest a new finite element method to find a $P^4$-velocity and a $P^3$-pressure solving incompressible Stokes equations at low cost. The method solves first the decoupled equation for a $P^4$-velocity. Then, using the calculated velocity, a locally calculable $P^3$-pressure will be defined component-wisely. The resulting $P^3$-pressure is analyzed to have the optimal order of convergence. Since the pressure is calculated by local computation only, the chief time cost of the new method is on solving the decoupled equation for the $P^4$-velocity. Besides, the method overcomes the problem of singular vertices or corners.
In this work, we analyse space-time reduced basis methods for the efficient numerical simulation of hemodynamics in arteries. The classical formulation of the reduced basis (RB) method features dimensionality reduction in space, while finite differences schemes are employed for the time integration of the resulting ordinary differential equation (ODE). Space-time reduced basis (ST-RB) methods extend the dimensionality reduction paradigm to the temporal dimension, projecting the full-order problem onto a low-dimensional spatio-temporal subspace. Our goal is to investigate the application of ST-RB methods to the unsteady incompressible Stokes equations, with a particular focus on stability. High-fidelity simulations are performed using the Finite Element (FE) method and BDF2 as time marching scheme. We consider two different ST-RB methods. In the first one - called ST-GRB - space-time model order reduction is achieved by means of a Galerkin projection; a spatio-temporal velocity basis enrichment procedure is introduced to guarantee stability. The second method - called ST-PGRB - is characterized by a Petrov--Galerkin projection, stemming from a suitable minimization of the FOM residual, that allows to automatically attain stability. The classical RB method - denoted as SRB-TFO - serves as a baseline for the theoretical development. Numerical tests have been conducted on an idealized symmetric bifurcation geometry and on the patient-specific one of a femoropopliteal bypass. The results show that both ST-RB methods provide accurate approximations of the high-fidelity solutions, while considerably reducing the computational cost. In particular, the ST-PGRB method exhibits the best performance, as it features a better computational efficiency while retaining accuracies in accordance with theoretical expectations.
We develop a novel discontinuous Galerkin method for solving the rotating thermal shallow water equations (TRSW) on a curvilinear mesh. Our method is provably entropy stable, conserves mass, buoyancy and vorticity, while also semi-discretely conserving energy. This is achieved by using novel numerical fluxes and splitting the pressure and convection operators. We implement our method on a cubed sphere mesh and numerically verify our theoretical results. Our experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilization.
The multispecies Landau collision operator describes the two-particle, small scattering angle or grazing collisions in a plasma made up of different species of particles such as electrons and ions. Recently, a structure preserving deterministic particle method arXiv:1910.03080 has been developed for the single species spatially homogeneous Landau equation. This method relies on a regularization of the Landau collision operator so that an approximate solution, which is a linear combination of Dirac delta distributions, is well-defined. Based on a weak form of the regularized Landau equation, the time dependent locations of the Dirac delta functions satisfy a system of ordinary differential equations. In this work, we extend this particle method to the multispecies case, and examine its conservation of mass, momentum, and energy, and decay of entropy properties. We show that the equilibrium distribution of the regularized multispecies Landau equation is a Maxwellian distribution, and state a critical condition on the regularization parameters that guarantees a species independent equilibrium temperature. A convergence study comparing an exact multispecies BKW solution to the particle solution shows approximately 2nd order accuracy. Important physical properties such as conservation, decay of entropy, and equilibrium distribution of the particle method are demonstrated with several numerical examples.
This paper presents a new algorithm for generating random inverse-Wishart matrices that directly generates the Cholesky factor of the matrix without computing the factorization. Whenever parameterized in terms of a precision matrix $\Omega=\Sigma^{-1}$, or its Cholesky factor, instead of a covariance matrix $\Sigma$, the new algorithm is more efficient than the current standard algorithm.
In the paper, we propose a collocation method based on multivariate polynomial splines over triangulation or tetrahedralization for solving Stokes and Navier-Stokes equations. We start with a detailed explanation of the method for the Stokes equation and then extend the study to the Navier-Stokes equations. We shall show that the numerical solution can approximate the exact PDE solution very well over several domains. Then we present several numerical experimental results to demonstrate the performance of the method over the 2D and 3D settings. Also, we apply the IPBM method to our method to find the solution over several curved domains effectively. In addition, we present a comparison with the existing multivariate spline methods in \cite{AL02} and several existing methods to show that the new method produces a similar and sometimes more accurate approximation in a more efficient fashion.
Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in physics and engineering. Many such problems have alternative formulations as integral equations that are mathematically more tractable than their PDE counterparts. However, the integral equation formulation poses a challenge in solving the dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and compute costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' The analysis of its parallel scalability applies generally to a class of existing methods that exploit the so-called strong admissibility. Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes data movement. Given a compression tolerance, our method constructs an approximate factorization of a discretized integral operator (dense matrix), which can be used to solve linear systems efficiently in parallel. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to demonstrate the performance of our implementation using the Julia language.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.