亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a numerical method to spline-interpolate discrete signals and then apply the integral transforms to the corresponding analytical spline functions. This represents a robust and computationally efficient technique for estimating the Laplace transform for noisy data. We revisited a Meijer-G symbolic approach to compute the Laplace transform and alternative approaches to extend canonical observed time-series. A discrete quantization scheme provides the foundation for rapid and reliable estimation of the inverse Laplace transform. We derive theoretic estimates for the inverse Laplace transform of analytic functions and demonstrate empirical results validating the algorithmic performance using observed and simulated data. We also introduce a generalization of the Laplace transform in higher dimensional space-time. We tested the discrete LT algorithm on data sampled from analytic functions with known exact Laplace transforms. The validation of the discrete ILT involves using complex functions with known analytic ILTs.

相關內容

We present a space--time ultra-weak discontinuous Galerkin discretization of the linear Schr\"odinger equation with variable potential. The proposed method is well-posed and quasi-optimal in mesh-dependent norms for very general discrete spaces. Optimal~$h$-convergence error estimates are derived for the method when test and trial spaces are chosen either as piecewise polynomials, or as a novel quasi-Trefftz polynomial space. The latter allows for a substantial reduction of the number of degrees of freedom and admits piecewise-smooth potentials. Several numerical experiments validate the accuracy and advantages of the proposed method.

We show that the two-stage minimum description length (MDL) criterion widely used to estimate linear change-point (CP) models corresponds to the marginal likelihood of a Bayesian model with a specific class of prior distributions. This allows results from the frequentist and Bayesian paradigms to be bridged together. Thanks to this link, one can rely on the consistency of the number and locations of the estimated CPs and the computational efficiency of frequentist methods, and obtain a probability of observing a CP at a given time, compute model posterior probabilities, and select or combine CP methods via Bayesian posteriors. Furthermore, we adapt several CP methods to take advantage of the MDL probabilistic representation. Based on simulated data, we show that the adapted CP methods can improve structural break detection compared to state-of-the-art approaches. Finally, we empirically illustrate the usefulness of combining CP detection methods when dealing with long time series and forecasting.

Matrix-variate time series data are largely available in applications. However, no attempt has been made to study their conditional heteroskedasticity that is often observed in economic and financial data. To address this gap, we propose a novel matrix generalized autoregressive conditional heteroskedasticity (GARCH) model to capture the dynamics of conditional row and column covariance matrices of matrix time series. The key innovation of the matrix GARCH model is the use of a univariate GARCH specification for the trace of conditional row or column covariance matrix, which allows for the identification of conditional row and column covariance matrices. Moreover, we introduce a quasi maximum likelihood estimator (QMLE) for model estimation and develop a portmanteau test for model diagnostic checking. Simulation studies are conducted to assess the finite-sample performance of the QMLE and portmanteau test. To handle large dimensional matrix time series, we also propose a matrix factor GARCH model. Finally, we demonstrate the superiority of the matrix GARCH and matrix factor GARCH models over existing multivariate GARCH-type models in volatility forecasting and portfolio allocations using three applications on credit default swap prices, global stock sector indices, and future prices.

In this paper, we develop a fast and accurate pseudospectral method to approximate numerically the fractional Laplacian $(-\Delta)^{\alpha/2}$ of a function on $\mathbb{R}$ for $\alpha=1$; this case, commonly referred to as the half Laplacian, is equivalent to the Hilbert transform of the derivative of the function. The main ideas are as follows. Given a twice continuously differentiable bounded function $u\in \mathit{C}_b^2(\mathbb{R})$, we apply the change of variable $x=L\cot(s)$, with $L>0$ and $s\in[0,\pi]$, which maps $\mathbb{R}$ into $[0,\pi]$, and denote $(-\Delta)_s^{1/2}u(x(s)) \equiv (-\Delta)^{1/2}u(x)$. Therefore, by performing a Fourier series expansion of $u(x(s))$, the problem is reduced to computing $(-\Delta)_s^{1/2}e^{iks} \equiv (-\Delta)^{1/2}(x + i)^k/(1+x^2)^{k/2}$. On a previous work, we considered the case with $k$ even and $\alpha\in(0,2)$, so we focus now on the case with $k$ odd. More precisely, we express $(-\Delta)_s^{1/2}e^{iks}$ for $k$ odd in terms of the Gaussian hypergeometric function ${}_2F_1$, and also as a well-conditioned finite sum. Then, we use a fast convolution result, that enable us to compute very efficiently $\sum_{l = 0}^Ma_l(-\Delta)_s^{1/2}e^{i(2l+1)s}$, for extremely large values of $M$. This enables us to approximate $(-\Delta)_s^{1/2}u(x(s))$ in a fast and accurate way, especially when $u(x(s))$ is not periodic of period $\pi$.

Estimation of signal-to-noise ratios and residual variances in high-dimensional linear models has various important applications including, e.g. heritability estimation in bioinformatics. One commonly used estimator, usually referred to as REML, is based on the likelihood of the random effects model, in which both the regression coefficients and the noise variables are respectively assumed to be i.i.d Gaussian random variables. In this paper, we aim to establish the consistency and asymptotic distribution of the REML estimator for the SNR, when the actual coefficient vector is fixed, and the actual noise is heteroscedastic and correlated, at the cost of assuming the entries of the design matrix are independent and skew-free. The asymptotic variance can be also consistently estimated when the noise is heteroscedastic but uncorrelated. Extensive numerical simulations illustrate our theoretical findings and also suggest some assumptions imposed in our theoretical results are likely relaxable.

In this work, we prove rigorous error estimates for a hybrid method introduced in [15] for solving the time-dependent radiation transport equation (RTE). The method relies on a splitting of the kinetic distribution function for the radiation into uncollided and collided components. A high-resolution method (in angle) is used to approximate the uncollided components and a low-resolution method is used to approximate the the collided component. After each time step, the kinetic distribution is reinitialized to be entirely uncollided. For this analysis, we consider a mono-energetic problem on a periodic domains, with constant material cross-sections of arbitrary size. To focus the analysis, we assume the uncollided equation is solved exactly and the collided part is approximated in angle via a spherical harmonic expansion ($\text{P}_N$ method). Using a non-standard set of semi-norms, we obtain estimates of the form $C(\varepsilon,\sigma,\Delta t)N^{-s}$ where $s\geq 1$ denotes the regularity of the solution in angle, $\varepsilon$ and $\sigma$ are scattering parameters, $\Delta t$ is the time-step before reinitialization, and $C$ is a complicated function of $\varepsilon$, $\sigma$, and $\Delta t$. These estimates involve analysis of the multiscale RTE that includes, but necessarily goes beyond, usual spectral analysis. We also compute error estimates for the monolithic $\text{P}_N$ method with the same resolution as the collided part in the hybrid. Our results highlight the benefits of the hybrid approach over the monolithic discretization in both highly scattering and streaming regimes.

Humans performing tasks that involve taking a series of multiple dependent actions over time often learn from experience by reflecting on specific cases and points in time, where different actions could have led to significantly better outcomes. While recent machine learning methods to retrospectively analyze sequential decision making processes promise to aid decision makers in identifying such cases, they have focused on environments with finitely many discrete states. However, in many practical applications, the state of the environment is inherently continuous in nature. In this paper, we aim to fill this gap. We start by formally characterizing a sequence of discrete actions and continuous states using finite horizon Markov decision processes and a broad class of bijective structural causal models. Building upon this characterization, we formalize the problem of finding counterfactually optimal action sequences and show that, in general, we cannot expect to solve it in polynomial time. Then, we develop a search method based on the $A^*$ algorithm that, under a natural form of Lipschitz continuity of the environment's dynamics, is guaranteed to return the optimal solution to the problem. Experiments on real clinical data show that our method is very efficient in practice, and it has the potential to offer interesting insights for sequential decision making tasks.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.

Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.

北京阿比特科技有限公司