亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The dynamic vehicle dispatching problem corresponds to deciding which vehicles to assign to requests that arise stochastically over time and space. It emerges in diverse areas, such as in the assignment of trucks to loads to be transported; in emergency systems; and in ride-hailing services. In this paper, we model the problem as a semi-Markov decision process, which allows us to treat time as continuous. In this setting, decision epochs coincide with discrete events whose time intervals are random. We argue that an event-based approach substantially reduces the combinatorial complexity of the decision space and overcomes other limitations of discrete-time models often proposed in the literature. In order to test our approach, we develop a new discrete-event simulator and use double deep q-learning to train our decision agents. Numerical experiments are carried out in realistic scenarios using data from New York City. We compare the policies obtained through our approach with heuristic policies often used in practice. Results show that our policies exhibit better average waiting times, cancellation rates and total service times, with reduction in average waiting times of up to 50% relative to the other tested heuristic policies.

相關內容

We applied physics-informed neural networks to solve the constitutive relations for nonlinear, path-dependent material behavior. As a result, the trained network not only satisfies all thermodynamic constraints but also instantly provides information about the current material state (i.e., free energy, stress, and the evolution of internal variables) under any given loading scenario without requiring initial data. One advantage of this work is that it bypasses the repetitive Newton iterations needed to solve nonlinear equations in complex material models. Additionally, strategies are provided to reduce the required order of derivative for obtaining the tangent operator. The trained model can be directly used in any finite element package (or other numerical methods) as a user-defined material model. However, challenges remain in the proper definition of collocation points and in integrating several non-equality constraints that become active or non-active simultaneously. We tested this methodology on rate-independent processes such as the classical von Mises plasticity model with a nonlinear hardening law, as well as local damage models for interface cracking behavior with a nonlinear softening law. In order to demonstrate the applicability of the methodology in handling complex path dependency in a three-dimensional (3D) scenario, we tested the approach using the equations governing a damage model for a three-dimensional interface model. Such models are frequently employed for intergranular fracture at grain boundaries. We have observed a perfect agreement between the results obtained through the proposed methodology and those obtained using the classical approach. Furthermore, the proposed approach requires significantly less effort in terms of implementation and computing time compared to the traditional methods.

Accurate delineation of key waveforms in an ECG is a critical initial step in extracting relevant features to support the diagnosis and treatment of heart conditions. Although deep learning based methods using a segmentation model to locate the P, QRS, and T waves have shown promising results, their ability to handle signals exhibiting arrhythmia remains unclear. This study builds on existing research by introducing a U-Net-like segmentation model for ECG delineation, with a particular focus on diverse arrhythmias. For this purpose, we curate an internal dataset containing waveform boundary annotations for various arrhythmia types to train and validate our model. Our key contributions include identifying segmentation model failures in different arrhythmia types, developing a robust model using a diverse training set, achieving comparable performance on benchmark datasets, and introducing a classification guided strategy to reduce false P wave predictions for specific arrhythmias. This study advances deep learning based ECG delineation in the context of arrhythmias and highlights its challenges.

Quantum computers promise exponential speed ups over classical computers for various tasks. This emerging technology is expected to have its first huge impact in High Performance Computing (HPC), as it can solve problems beyond the reach of HPC. To that end, HPC will require quantum accelerators, which will enable applications to run on both classical and quantum devices, via hybrid quantum-classical nodes. Hybrid quantum-HPC applications should be scalable, executable on Quantum Error Corrected (QEC) devices, and could use quantum-classical primitives. However, the lack of scalability, poor performances, and inability to insert classical schemes within quantum applications has prevented current quantum frameworks from being adopted by the HPC community. This paper specifies the requirements of a hybrid quantum-classical framework for HPC, and introduces a novel hardware-agnostic framework called Q-Pragma. This framework extends the classical programming language C++ heavily used in HPC via the addition of pragma directives to manage quantum computations.

We present a scalable strategy for development of mesh-free hybrid neuro-symbolic partial differential equation solvers based on existing mesh-based numerical discretization methods. Particularly, this strategy can be used to efficiently train neural network surrogate models of partial differential equations by (i) leveraging the accuracy and convergence properties of advanced numerical methods, solvers, and preconditioners, as well as (ii) better scalability to higher order PDEs by strictly limiting optimization to first order automatic differentiation. The presented neural bootstrapping method (hereby dubbed NBM) is based on evaluation of the finite discretization residuals of the PDE system obtained on implicit Cartesian cells centered on a set of random collocation points with respect to trainable parameters of the neural network. Importantly, the conservation laws and symmetries present in the bootstrapped finite discretization equations inform the neural network about solution regularities within local neighborhoods of training points. We apply NBM to the important class of elliptic problems with jump conditions across irregular interfaces in three spatial dimensions. We show the method is convergent such that model accuracy improves by increasing number of collocation points in the domain and predonditioning the residuals. We show NBM is competitive in terms of memory and training speed with other PINN-type frameworks. The algorithms presented here are implemented using \texttt{JAX} in a software package named \texttt{JAX-DIPS} (//github.com/JAX-DIPS/JAX-DIPS), standing for differentiable interfacial PDE solver. We open sourced \texttt{JAX-DIPS} to facilitate research into use of differentiable algorithms for developing hybrid PDE solvers.

Bayesian binary regression is a prosperous area of research due to the computational challenges encountered by currently available methods either for high-dimensional settings or large datasets, or both. In the present work, we focus on the expectation propagation (EP) approximation of the posterior distribution in Bayesian probit regression under a multivariate Gaussian prior distribution. Adapting more general derivations in Anceschi et al. (2023), we show how to leverage results on the extended multivariate skew-normal distribution to derive an efficient implementation of the EP routine having a per-iteration cost that scales linearly in the number of covariates. This makes EP computationally feasible also in challenging high-dimensional settings, as shown in a detailed simulation study.

Functional regression analysis is an established tool for many contemporary scientific applications. Regression problems involving large and complex data sets are ubiquitous, and feature selection is crucial for avoiding overfitting and achieving accurate predictions. We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse high dimensional function-on-function regression problem, and we show how to extend it to the scalar-on-function framework. Our method, called FAStEN, combines functional data, optimization, and machine learning techniques to perform feature selection and parameter estimation simultaneously. We exploit the properties of Functional Principal Components and the sparsity inherent to the Dual Augmented Lagrangian problem to significantly reduce computational cost, and we introduce an adaptive scheme to improve selection accuracy. In addition, we derive asymptotic oracle properties, which guarantee estimation and selection consistency for the proposed FAStEN estimator. Through an extensive simulation study, we benchmark our approach to the best existing competitors and demonstrate a massive gain in terms of CPU time and selection performance, without sacrificing the quality of the coefficients' estimation. The theoretical derivations and the simulation study provide a strong motivation for our approach. Finally, we present an application to brain fMRI data from the AOMIC PIOP1 study.

Many researchers have identified distribution shift as a likely contributor to the reproducibility crisis in behavioral and biomedical sciences. The idea is that if treatment effects vary across individual characteristics and experimental contexts, then studies conducted in different populations will estimate different average effects. This paper uses ``generalizability" methods to quantify how much of the effect size discrepancy between an original study and its replication can be explained by distribution shift on observed unit-level characteristics. More specifically, we decompose this discrepancy into ``components" attributable to sampling variability (including publication bias), observable distribution shifts, and residual factors. We compute this decomposition for several directly-replicated behavioral science experiments and find little evidence that observable distribution shifts contribute appreciably to non-replicability. In some cases, this is because there is too much statistical noise. In other cases, there is strong evidence that controlling for additional moderators is necessary for reliable replication.

Electrical circuits are present in a variety of technologies, making their design an important part of computer aided engineering. The growing number of tunable parameters that affect the final design leads to a need for new approaches of quantifying their impact. Machine learning may play a key role in this regard, however current approaches often make suboptimal use of existing knowledge about the system at hand. In terms of circuits, their description via modified nodal analysis is well-understood. This particular formulation leads to systems of differential-algebraic equations (DAEs) which bring with them a number of peculiarities, e.g. hidden constraints that the solution needs to fulfill. We aim to use the recently introduced dissection concept for DAEs that can decouple a given system into ordinary differential equations, only depending on differential variables, and purely algebraic equations that describe the relations between differential and algebraic variables. The idea then is to only learn the differential variables and reconstruct the algebraic ones using the relations from the decoupling. This approach guarantees that the algebraic constraints are fulfilled up to the accuracy of the nonlinear system solver, which represents the main benefit highlighted in this article.

We provide a new sequent calculus that enjoys syntactic cut-elimination and strongly terminating backward proof search for the intuitionistic Strong L\"ob logic $\sf{iSL}$, an intuitionistic modal logic with a provability interpretation. A novel measure on sequents is used to prove both the termination of the naive backward proof search strategy, and the admissibility of cut in a syntactic and direct way, leading to a straightforward cut-elimination procedure. All proofs have been formalised in the interactive theorem prover Coq.

Hawkes processes are often applied to model dependence and interaction phenomena in multivariate event data sets, such as neuronal spike trains, social interactions, and financial transactions. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is generally a computationally expensive task, all the more with Bayesian estimation methods. In particular, for generalised nonlinear Hawkes processes, Monte-Carlo Markov Chain methods applied to compute the doubly intractable posterior distribution are not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we first unify existing variational Bayes approaches under a general nonparametric inference framework, and analyse the asymptotic properties of these methods under easily verifiable conditions on the prior, the variational class, and the nonlinear model. Secondly, we propose a novel sparsity-inducing procedure, and derive an adaptive mean-field variational algorithm for the popular sigmoid Hawkes processes. Our algorithm is parallelisable and therefore computationally efficient in high-dimensional setting. Through an extensive set of numerical simulations, we also demonstrate that our procedure is able to adapt to the dimensionality of the parameter of the Hawkes process, and is partially robust to some type of model mis-specification.

北京阿比特科技有限公司