Modern time series analysis requires the ability to handle datasets that are inherently high-dimensional; examples include applications in climatology, where measurements from numerous sensors must be taken into account, or inventory tracking of large shops, where the dimension is defined by the number of tracked items. The standard way to mitigate computational issues arising from the high dimensionality of the data is by applying some dimension reduction technique that preserves the structural properties of the ambient space. The dissimilarity between two time series is often measured by ``discrete'' notions of distance, e.g. the dynamic time warping or the discrete Fr\'echet distance. Since all these distance functions are computed directly on the points of a time series, they are sensitive to different sampling rates or gaps. The continuous Fr\'echet distance offers a popular alternative which aims to alleviate this by taking into account all points on the polygonal curve obtained by linearly interpolating between any two consecutive points in a sequence. We study the ability of random projections \`a la Johnson and Lindenstrauss to preserve the continuous Fr\'echet distance of polygonal curves by effectively reducing the dimension. In particular, we show that one can reduce the dimension to $O(\epsilon^{-2} \log N)$, where $N$ is the total number of input points while preserving the continuous Fr\'echet distance between any two determined polygonal curves within a factor of $1\pm \epsilon$. We conclude with applications on clustering.
Sampling from Gibbs distributions $p(x) \propto \exp(-V(x)/\varepsilon)$ and computing their log-partition function are fundamental tasks in statistics, machine learning, and statistical physics. However, while efficient algorithms are known for convex potentials $V$, the situation is much more difficult in the non-convex case, where algorithms necessarily suffer from the curse of dimensionality in the worst case. For optimization, which can be seen as a low-temperature limit of sampling, it is known that smooth functions $V$ allow faster convergence rates. Specifically, for $m$-times differentiable functions in $d$ dimensions, the optimal rate for algorithms with $n$ function evaluations is known to be $O(n^{-m/d})$, where the constant can potentially depend on $m, d$ and the function to be optimized. Hence, the curse of dimensionality can be alleviated for smooth functions at least in terms of the convergence rate. Recently, it has been shown that similarly fast rates can also be achieved with polynomial runtime $O(n^{3.5})$, where the exponent $3.5$ is independent of $m$ or $d$. Hence, it is natural to ask whether similar rates for sampling and log-partition computation are possible, and whether they can be realized in polynomial time with an exponent independent of $m$ and $d$. We show that the optimal rates for sampling and log-partition computation are sometimes equal and sometimes faster than for optimization. We then analyze various polynomial-time sampling algorithms, including an extension of a recent promising optimization approach, and find that they sometimes exhibit interesting behavior but no near-optimal rates. Our results also give further insights on the relation between sampling, log-partition, and optimization problems.
This paper introduces an efficient multi-linear nonparametric (kernel-based) approximation framework for data regression and imputation, and its application to dynamic magnetic-resonance imaging (dMRI). Data features are assumed to reside in or close to a smooth manifold embedded in a reproducing kernel Hilbert space. Landmark points are identified to describe concisely the point cloud of features by linear approximating patches which mimic the concept of tangent spaces to smooth manifolds. The multi-linear model effects dimensionality reduction, enables efficient computations, and extracts data patterns and their geometry without any training data or additional information. Numerical tests on dMRI data under severe under-sampling demonstrate remarkable improvements in efficiency and accuracy of the proposed approach over its predecessors, popular data modeling methods, as well as recent tensor-based and deep-image-prior schemes.
We characterise the learning of a mixture of two clouds of data points with generic centroids via empirical risk minimisation in the high dimensional regime, under the assumptions of generic convex loss and convex regularisation. Each cloud of data points is obtained by sampling from a possibly uncountable superposition of Gaussian distributions, whose variance has a generic probability density $\varrho$. Our analysis covers therefore a large family of data distributions, including the case of power-law-tailed distributions with no covariance. We study the generalisation performance of the obtained estimator, we analyse the role of regularisation, and the dependence of the separability transition on the distribution scale parameters.
Bayesian inference in deep neural networks is challenging due to the high-dimensional, strongly multi-modal parameter posterior density landscape. Markov chain Monte Carlo approaches asymptotically recover the true posterior but are considered prohibitively expensive for large modern architectures. Local methods, which have emerged as a popular alternative, focus on specific parameter regions that can be approximated by functions with tractable integrals. While these often yield satisfactory empirical results, they fail, by definition, to account for the multi-modality of the parameter posterior. In this work, we argue that the dilemma between exact-but-unaffordable and cheap-but-inexact approaches can be mitigated by exploiting symmetries in the posterior landscape. Such symmetries, induced by neuron interchangeability and certain activation functions, manifest in different parameter values leading to the same functional output value. We show theoretically that the posterior predictive density in Bayesian neural networks can be restricted to a symmetry-free parameter reference set. By further deriving an upper bound on the number of Monte Carlo chains required to capture the functional diversity, we propose a straightforward approach for feasible Bayesian inference. Our experiments suggest that efficient sampling is indeed possible, opening up a promising path to accurate uncertainty quantification in deep learning.
Experimental crossover designs are widely used in medicine, agriculture, and other areas of the biological sciences. Due to the characteristics of the crossover design, each experimental unit has longitudinal observations and the presence of drag effects on the response variable. There is no package in {R} that clearly models data from crossover designs. The {CrossCarry} package presented in this paper allows testing any crossover design as long as the observed response variable belongs to the exponential family, regardless of whether or not there is a washout period. It also allows modeling repeated measurements within each period and extends the correlation structures used in the generalized estimating equations. The family of correlation structures is built that takes into account the particularities of the design, that is, the correlation between and within the periods. It also includes a parametric component for modeling treatment effects and a non-parametric component for modeling time effects and carry-over effects. The non-parametric component is estimated from splines inserted into the generalized estimation equations.
In this article, we introduce parallel-in-time methods for state and parameter estimation in general nonlinear non-Gaussian state-space models using the statistical linear regression and the iterated statistical posterior linearization paradigms. We also reformulate the proposed methods in a square-root form, resulting in improved numerical stability while preserving the parallelization capabilities. We then leverage the fixed-point structure of our methods to perform likelihood-based parameter estimation in logarithmic time with respect to the number of observations. Finally, we demonstrate the practical performance of the methodology with numerical experiments run on a graphics processing unit (GPU).
We consider the classic 1-center problem: Given a set $P$ of $n$ points in a metric space find the point in $P$ that minimizes the maximum distance to the other points of $P$. We study the complexity of this problem in $d$-dimensional $\ell_p$-metrics and in edit and Ulam metrics over strings of length $d$. Our results for the 1-center problem may be classified based on $d$ as follows. $\bullet$ Small $d$: Assuming the hitting set conjecture (HSC), we show that when $d=\omega(\log n)$, no subquadratic algorithm can solve 1-center problem in any of the $\ell_p$-metrics, or in edit or Ulam metrics. $\bullet$ Large $d$: When $d=\Omega(n)$, we extend our conditional lower bound to rule out subquartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a $(1+\epsilon)$-approximation for 1-center in Ulam metric with running time $\tilde{O_{\varepsilon}}(nd+n^2\sqrt{d})$. We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension $d$, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of $n$ strings each of length $n$, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set.
In the field of sampling algorithms, MCMC (Markov Chain Monte Carlo) methods are widely used when direct sampling is not possible. However, multimodality of target distributions often leads to slow convergence and mixing. One common solution is parallel tempering. Though highly effective in practice, theoretical guarantees on its performance are limited. In this paper, we present a new lower bound for parallel tempering on the spectral gap that has a polynomial dependence on all parameters except $\log L$, where $(L + 1)$ is the number of levels. This improves the best existing bound which depends exponentially on the number of modes. Moreover, we complement our result with a hypothetical upper bound on spectral gap that has an exponential dependence on $\log L$, which shows that, in some sense, our bound is tight.
Compositional data in which only the relative abundances of variables are measured are ubiquitous. In the context of health and medical compositional data, an important class of biomarkers is the log ratios between groups of variables. However, selecting log ratios that are predictive of a response variable is a combinatorial problem. Existing greedy-search based methods are time-consuming, which hinders their application to high-dimensional data sets. We propose a novel selection approach called the supervised log ratio method that can efficiently select predictive log ratios in high-dimensional settings. The proposed method is motivated by a latent variable model and we show that the log ratio biomarker can be selected via simple clustering after supervised feature screening. The supervised log ratio method is implemented in an R package, which is publicly available at \url{//github.com/drjingma/slr}. We illustrate the merits of our approach through simulation studies and analysis of a microbiome data set on HIV infection.
Using the equivalent inclusion method (a method strongly related to the Hashin-Shtrikman variational principle) as a surrogate model, we propose a variance reduction strategy for the numerical homogenization of random composites made of inclusions (or rather inhomogeneities) embedded in a homogeneous matrix. The efficiency of this strategy is demonstrated within the framework of two-dimensional, linear conductivity. Significant computational gains vs full-field simulations are obtained even for high contrast values. We also show that our strategy allows to investigate the influence of parameters of the microstructure on the macroscopic response. Our strategy readily extends to three-dimensional problems and to linear elasticity. Attention is paid to the computational cost of the surrogate model. In particular, an inexpensive approximation of the so-called influence tensors (that are used to compute the surrogate model) is proposed.