Blood vessel networks, represented as 3D graphs, help predict disease biomarkers, simulate blood flow, and aid in synthetic image generation, relevant in both clinical and pre-clinical settings. However, generating realistic vessel graphs that correspond to an anatomy of interest is challenging. Previous methods aimed at generating vessel trees mostly in an autoregressive style and could not be applied to vessel graphs with cycles such as capillaries or specific anatomical structures such as the Circle of Willis. Addressing this gap, we introduce the first application of \textit{denoising diffusion models} in 3D vessel graph generation. Our contributions include a novel, two-stage generation method that sequentially denoises node coordinates and edges. We experiment with two real-world vessel datasets, consisting of microscopic capillaries and major cerebral vessels, and demonstrate the generalizability of our method for producing diverse, novel, and anatomically plausible vessel graphs.
Skill-based reinforcement learning (RL) approaches have shown considerable promise, especially in solving long-horizon tasks via hierarchical structures. These skills, learned task-agnostically from offline datasets, can accelerate the policy learning process for new tasks. Yet, the application of these skills in different domains remains restricted due to their inherent dependency on the datasets, which poses a challenge when attempting to learn a skill-based policy via RL for a target domain different from the datasets' domains. In this paper, we present a novel offline skill learning framework DuSkill which employs a guided Diffusion model to generate versatile skills extended from the limited skills in datasets, thereby enhancing the robustness of policy learning for tasks in different domains. Specifically, we devise a guided diffusion-based skill decoder in conjunction with the hierarchical encoding to disentangle the skill embedding space into two distinct representations, one for encapsulating domain-invariant behaviors and the other for delineating the factors that induce domain variations in the behaviors. Our DuSkill framework enhances the diversity of skills learned offline, thus enabling to accelerate the learning procedure of high-level policies for different domains. Through experiments, we show that DuSkill outperforms other skill-based imitation learning and RL algorithms for several long-horizon tasks, demonstrating its benefits in few-shot imitation and online RL.
Reinforcement learning often uses neural networks to solve complex control tasks. However, neural networks are sensitive to input perturbations, which makes their deployment in safety-critical environments challenging. This work lifts recent results from formally verifying neural networks against such disturbances to reinforcement learning in continuous state and action spaces using reachability analysis. While previous work mainly focuses on adversarial attacks for robust reinforcement learning, we train neural networks utilizing entire sets of perturbed inputs and maximize the worst-case reward. The obtained agents are verifiably more robust than agents obtained by related work, making them more applicable in safety-critical environments. This is demonstrated with an extensive empirical evaluation of four different benchmarks.
Biomechanics and human movement research often involves measuring multiple kinematic or kinetic variables regularly throughout a movement, yielding data that present as smooth, multivariate, time-varying curves and are naturally amenable to functional data analysis. It is now increasingly common to record the same movement repeatedly for each individual, resulting in curves that are serially correlated and can be viewed as longitudinal functional data. We present a new approach for modelling multivariate multilevel longitudinal functional data, with application to kinematic data from recreational runners collected during a treadmill run. For each stride, the runners' hip, knee and ankle angles are modelled jointly as smooth multivariate functions that depend on subject-specific covariates. Longitudinally varying multivariate functional random effects are used to capture the dependence among adjacent strides and changes in the multivariate functions over the course of the treadmill run. A basis modelling approach is adopted to fit the model -- we represent each observation using a multivariate functional principal components basis and model the basis coefficients using scalar longitudinal mixed effects models. The predicted random effects are used to understand and visualise changes in the multivariate functional data over the course of the treadmill run. In our application, our method quantifies the effects of scalar covariates on the multivariate functional data, revealing a statistically significant effect of running speed at the hip, knee and ankle joints. Analysis of the predicted random effects reveals that individuals' kinematics are generally stable but certain individuals who exhibit strong changes during the run can also be identified. A simulation study is presented to demonstrate the efficacy of the proposed methodology under realistic data-generating scenarios.
Prognosis prediction is crucial for determining optimal treatment plans for lung cancer patients. Traditionally, such predictions relied on models developed from retrospective patient data. Recently, large language models (LLMs) have gained attention for their ability to process and generate text based on extensive learned knowledge. In this study, we evaluate the potential of GPT-4o mini and GPT-3.5 in predicting the prognosis of lung cancer patients. We collected two prognosis datasets, i.e., survival and post-operative complication datasets, and designed multiple tasks to assess the models' performance comprehensively. Logistic regression models were also developed as baselines for comparison. The experimental results demonstrate that LLMs can achieve competitive, and in some tasks superior, performance in lung cancer prognosis prediction compared to data-driven logistic regression models despite not using additional patient data. These findings suggest that LLMs can be effective tools for prognosis prediction in lung cancer, particularly when patient data is limited or unavailable.
Animatronic robots hold the promise of enabling natural human-robot interaction through lifelike facial expressions. However, generating realistic, speech-synchronized robot expressions poses significant challenges due to the complexities of facial biomechanics and the need for responsive motion synthesis. This paper introduces a novel, skinning-centric approach to drive animatronic robot facial expressions from speech input. At its core, the proposed approach employs linear blend skinning (LBS) as a unifying representation, guiding innovations in both embodiment design and motion synthesis. LBS informs the actuation topology, facilitates human expression retargeting, and enables efficient speech-driven facial motion generation. This approach demonstrates the capability to produce highly realistic facial expressions on an animatronic face in real-time at over 4000 fps on a single Nvidia RTX 4090, significantly advancing robots' ability to replicate nuanced human expressions for natural interaction. To foster further research and development in this field, the code has been made publicly available at: \url{//github.com/library87/OpenRoboExp}.
Detection of malicious behavior in a large network is a challenging problem for machine learning in computer security, since it requires a model with high expressive power and scalable inference. Existing solutions struggle to achieve this feat -- current cybersec-tailored approaches are still limited in expressivity, and methods successful in other domains do not scale well for large volumes of data, rendering frequent retraining impossible. This work proposes a new perspective for learning from graph data that is modeling network entity interactions as a large heterogeneous graph. High expressivity of the method is achieved with neural network architecture HMILnet that naturally models this type of data and provides theoretical guarantees. The scalability is achieved by pursuing local graph inference, i.e., classifying individual vertices and their neighborhood as independent samples. Our experiments exhibit improvement over the state-of-the-art Probabilistic Threat Propagation (PTP) algorithm, show a further threefold accuracy improvement when additional data is used, which is not possible with the PTP algorithm, and demonstrate the generalization capabilities of the method to new, previously unseen entities.
In decision-making problems with limited training data, policy functions approximated using deep neural networks often exhibit suboptimal performance. An alternative approach involves learning a world model from the limited data and determining actions through online search. However, the performance is adversely affected by compounding errors arising from inaccuracies in the learned world model. While methods like TreeQN have attempted to address these inaccuracies by incorporating algorithmic inductive biases into the neural network architectures, the biases they introduce are often weak and insufficient for complex decision-making tasks. In this work, we introduce Differentiable Tree Search Network (D-TSN), a novel neural network architecture that significantly strengthens the inductive bias by embedding the algorithmic structure of a best-first online search algorithm. D-TSN employs a learned world model to conduct a fully differentiable online search. The world model is jointly optimized with the search algorithm, enabling the learning of a robust world model and mitigating the effect of prediction inaccuracies. Further, we note that a naive incorporation of best-first search could lead to a discontinuous loss function in the parameter space. We address this issue by adopting a stochastic tree expansion policy, formulating search tree expansion as another decision-making task, and introducing an effective variance reduction technique for the gradient computation. We evaluate D-TSN in an offline-RL setting with a limited training data scenario on Procgen games and grid navigation task, and demonstrate that D-TSN outperforms popular model-free and model-based baselines.
The community cellular networks volunteers and researchers currently rarely have an access to information about the networks for each site. This makes it difficult for them to evaluate network performance, identify outrages and downtimes, or even to show the current site locations. In this paper, we propose the Community Cellular Networks Coverage Visualizer, a performance dashboard to help reduce the workload of technicians and gain trust from illustrating the reliability of the networks. The map displays the overall and in-depth performance for each current and future CCNs sites with privacy-focused implementation, while the multi-series line chart emphasizes on providing the capability of network overtime. Not only it will help users identify locations that have stronger and reliable signals nearby, but our applicaiton will also be an essential tool for volunteers and engineers to determine the optimal locations to install a new site and quickly identify possible network failures.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.
The amount of publicly available biomedical literature has been growing rapidly in recent years, yet question answering systems still struggle to exploit the full potential of this source of data. In a preliminary processing step, many question answering systems rely on retrieval models for identifying relevant documents and passages. This paper proposes a weighted cosine distance retrieval scheme based on neural network word embeddings. Our experiments are based on publicly available data and tasks from the BioASQ biomedical question answering challenge and demonstrate significant performance gains over a wide range of state-of-the-art models.