亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Following the major successes of self-attention and Transformers for image analysis, we investigate the use of such attention mechanisms in the context of Image Quality Assessment (IQA) and propose a novel full-reference IQA method, Vision Transformer for Attention Modulated Image Quality (VTAMIQ). Our method achieves competitive or state-of-the-art performance on the existing IQA datasets and significantly outperforms previous metrics in cross-database evaluations. Most patch-wise IQA methods treat each patch independently; this partially discards global information and limits the ability to model long-distance interactions. We avoid this problem altogether by employing a transformer to encode a sequence of patches as a single global representation, which by design considers interdependencies between patches. We rely on various attention mechanisms -- first with self-attention within the Transformer, and second with channel attention within our difference modulation network -- specifically to reveal and enhance the more salient features throughout our architecture. With large-scale pre-training for both classification and IQA tasks, VTAMIQ generalizes well to unseen sets of images and distortions, further demonstrating the strength of transformer-based networks for vision modelling.

相關內容

 Attention機制最早是在視覺圖像領域提出來的,但是真正火起來應該算是google mind團隊的這篇論文《Recurrent Models of Visual Attention》[14],他們在RNN模型上使用了attention機制來進行圖像分類。隨后,Bahdanau等人在論文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用類似attention的機制在機器翻譯任務上將翻譯和對齊同時進行,他們的工作算是是第一個提出attention機制應用到NLP領域中。接著類似的基于attention機制的RNN模型擴展開始應用到各種NLP任務中。最近,如何在CNN中使用attention機制也成為了大家的研究熱點。下圖表示了attention研究進展的大概趨勢。

Multi-label image recognition is a challenging computer vision task of practical use. Progresses in this area, however, are often characterized by complicated methods, heavy computations, and lack of intuitive explanations. To effectively capture different spatial regions occupied by objects from different categories, we propose an embarrassingly simple module, named class-specific residual attention (CSRA). CSRA generates class-specific features for every category by proposing a simple spatial attention score, and then combines it with the class-agnostic average pooling feature. CSRA achieves state-of-the-art results on multilabel recognition, and at the same time is much simpler than them. Furthermore, with only 4 lines of code, CSRA also leads to consistent improvement across many diverse pretrained models and datasets without any extra training. CSRA is both easy to implement and light in computations, which also enjoys intuitive explanations and visualizations.

This paper presents a Simple and effective unsupervised adaptation method for Robust Object Detection (SimROD). To overcome the challenging issues of domain shift and pseudo-label noise, our method integrates a novel domain-centric augmentation method, a gradual self-labeling adaptation procedure, and a teacher-guided fine-tuning mechanism. Using our method, target domain samples can be leveraged to adapt object detection models without changing the model architecture or generating synthetic data. When applied to image corruptions and high-level cross-domain adaptation benchmarks, our method outperforms prior baselines on multiple domain adaptation benchmarks. SimROD achieves new state-of-the-art on standard real-to-synthetic and cross-camera setup benchmarks. On the image corruption benchmark, models adapted with our method achieved a relative robustness improvement of 15-25% AP50 on Pascal-C and 5-6% AP on COCO-C and Cityscapes-C. On the cross-domain benchmark, our method outperformed the best baseline performance by up to 8% AP50 on Comic dataset and up to 4% on Watercolor dataset.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

Multi-modal reasoning systems rely on a pre-trained object detector to extract regions of interest from the image. However, this crucial module is typically used as a black box, trained independently of the downstream task and on a fixed vocabulary of objects and attributes. This makes it challenging for such systems to capture the long tail of visual concepts expressed in free form text. In this paper we propose MDETR, an end-to-end modulated detector that detects objects in an image conditioned on a raw text query, like a caption or a question. We use a transformer-based architecture to reason jointly over text and image by fusing the two modalities at an early stage of the model. We pre-train the network on 1.3M text-image pairs, mined from pre-existing multi-modal datasets having explicit alignment between phrases in text and objects in the image. We then fine-tune on several downstream tasks such as phrase grounding, referring expression comprehension and segmentation, achieving state-of-the-art results on popular benchmarks. We also investigate the utility of our model as an object detector on a given label set when fine-tuned in a few-shot setting. We show that our pre-training approach provides a way to handle the long tail of object categories which have very few labelled instances. Our approach can be easily extended for visual question answering, achieving competitive performance on GQA and CLEVR. The code and models are available at //github.com/ashkamath/mdetr.

Image captioning models typically follow an encoder-decoder architecture which uses abstract image feature vectors as input to the encoder. One of the most successful algorithms uses feature vectors extracted from the region proposals obtained from an object detector. In this work we introduce the Object Relation Transformer, that builds upon this approach by explicitly incorporating information about the spatial relationship between input detected objects through geometric attention. Quantitative and qualitative results demonstrate the importance of such geometric attention for image captioning, leading to improvements on all common captioning metrics on the MS-COCO dataset.

This paper proposes a new generative adversarial network for pose transfer, i.e., transferring the pose of a given person to a target pose. The generator of the network comprises a sequence of Pose-Attentional Transfer Blocks that each transfers certain regions it attends to, generating the person image progressively. Compared with those in previous works, our generated person images possess better appearance consistency and shape consistency with the input images, thus significantly more realistic-looking. The efficacy and efficiency of the proposed network are validated both qualitatively and quantitatively on Market-1501 and DeepFashion. Furthermore, the proposed architecture can generate training images for person re-identification, alleviating data insufficiency. Codes and models are available at: //github.com/tengteng95/Pose-Transfer.git.

Along with the development of virtual reality (VR), omnidirectional images play an important role in producing multimedia content with immersive experience. However, despite various existing approaches for omnidirectional image stitching, how to quantitatively assess the quality of stitched images is still insufficiently explored. To address this problem, we establish a novel omnidirectional image dataset containing stitched images as well as dual-fisheye images captured from standard quarters of 0, 90, 180 and 270. In this manner, when evaluating the quality of an image stitched from a pair of fisheye images (e.g., 0 and 180), the other pair of fisheye images (e.g., 90 and 270) can be used as the cross-reference to provide ground-truth observations of the stitching regions. Based on this dataset, we further benchmark seven widely used stitching models with seven evaluation metrics for IQA. To the best of our knowledge, it is the first dataset that focuses on assessing the stitching quality of omnidirectional images.

Transferring image-based object detectors to domain of videos remains a challenging problem. Previous efforts mostly exploit optical flow to propagate features across frames, aiming to achieve a good trade-off between performance and computational complexity. However, introducing an extra model to estimate optical flow would significantly increase the overall model size. The gap between optical flow and high-level features can hinder it from establishing the spatial correspondence accurately. Instead of relying on optical flow, this paper proposes a novel module called Progressive Sparse Local Attention (PSLA), which establishes the spatial correspondence between features across frames in a local region with progressive sparse strides and uses the correspondence to propagate features. Based on PSLA, Recursive Feature Updating (RFU) and Dense feature Transforming (DFT) are introduced to model temporal appearance and enrich feature representation respectively. Finally, a novel framework for video object detection is proposed. Experiments on ImageNet VID are conducted. Our framework achieves a state-of-the-art speed-accuracy trade-off with significantly reduced model capacity.

Neural network models recently proposed for question answering (QA) primarily focus on capturing the passage-question relation. However, they have minimal capability to link relevant facts distributed across multiple sentences which is crucial in achieving deeper understanding, such as performing multi-sentence reasoning, co-reference resolution, etc. They also do not explicitly focus on the question and answer type which often plays a critical role in QA. In this paper, we propose a novel end-to-end question-focused multi-factor attention network for answer extraction. Multi-factor attentive encoding using tensor-based transformation aggregates meaningful facts even when they are located in multiple sentences. To implicitly infer the answer type, we also propose a max-attentional question aggregation mechanism to encode a question vector based on the important words in a question. During prediction, we incorporate sequence-level encoding of the first wh-word and its immediately following word as an additional source of question type information. Our proposed model achieves significant improvements over the best prior state-of-the-art results on three large-scale challenging QA datasets, namely NewsQA, TriviaQA, and SearchQA.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司