亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we start by training End-to-End Automatic Speech Recognition (ASR) models using Federated Learning (FL) and examining the fundamental considerations that can be pivotal in minimizing the performance gap in terms of word error rate between models trained using FL versus their centralized counterpart. Specifically, we study the effect of (i) adaptive optimizers, (ii) loss characteristics via altering Connectionist Temporal Classification (CTC) weight, (iii) model initialization through seed start, (iv) carrying over modeling setup from experiences in centralized training to FL, e.g., pre-layer or post-layer normalization, and (v) FL-specific hyperparameters, such as number of local epochs, client sampling size, and learning rate scheduler, specifically for ASR under heterogeneous data distribution. We shed light on how some optimizers work better than others via inducing smoothness. We also summarize the applicability of algorithms, trends, and propose best practices from prior works in FL (in general) toward End-to-End ASR models.

相關內容

語音識別是計算機科學和計算語言學的一個跨學科子領域,它發展了一些方法和技術,使計算機可以將口語識別和翻譯成文本。 它也被稱為自動語音識別(ASR),計算機語音識別或語音轉文本(STT)。它整合了計算機科學,語言學和計算機工程領域的知識和研究。

In this paper, we propose an Invariant Extended Kalman Filter (IEKF) based Visual-Inertial Odometry (VIO) using multiple features in man-made environments. Conventional EKF-based VIO usually suffers from system inconsistency and angular drift that naturally occurs in feature-based methods. However, in man-made environments, notable structural regularities, such as lines and vanishing points, offer valuable cues for localization. To exploit these structural features effectively and maintain system consistency, we design a right invariant filter-based VIO scheme incorporating point, line, and vanishing point features. We demonstrate that the conventional additive error definition for point features can also preserve system consistency like the invariant error definition by proving a mathematically equivalent measurement model. And a similar conclusion is established for line features. Additionally, we conduct an invariant filter-based observability analysis proving that vanishing point measurement maintains unobservable directions naturally. Both simulation and real-world tests are conducted to validate our methods' pose accuracy and consistency. The experimental results validate the competitive performance of our method, highlighting its ability to deliver accurate and consistent pose estimation in man-made environments.

In this paper, we explore the usability of a custom eXtensible Robotic Language (XRL) we proposed. To evaluate the user experience and the interaction with the potential XRL-based software robot, we conducted an exploratory study comparing the notation of three business processes using our XRL language and two languages used by the leading RPA solutions. The results of our exploratory study show that the currently used XML-based formats perform worse in terms of conciseness and readability. Our new XRL language is promising in terms of increasing the readability of the language, thus reducing the time needed to automate business processes.

In this paper, we present a Deep Reinforcement Learning (RL)-driven Adaptive Stochastic Nonlinear Model Predictive Control (SNMPC) to optimize uncertainty handling, constraints robustification, feasibility, and closed-loop performance. To this end, we conceive an RL agent to proactively anticipate upcoming control tasks and to dynamically determine the most suitable combination of key SNMPC parameters - foremost the robustification factor $\kappa$ and the Uncertainty Propagation Horizon (UPH) $T_u$. We analyze the trained RL agent's decision-making process and highlight its ability to learn context-dependent optimal parameters. One key finding is that adapting the constraints robustification factor with the learned policy reduces conservatism and improves closed-loop performance while adapting UPH renders previously infeasible SNMPC problems feasible when faced with severe disturbances. We showcase the enhanced robustness and feasibility of our Adaptive SNMPC (aSNMPC) through the real-time motion control task of an autonomous passenger vehicle to follow an optimal race line when confronted with significant time-variant disturbances. Experimental findings demonstrate that our look-ahead RL-driven aSNMPC outperforms its Static SNMPC (sSNMPC) counterpart in minimizing the lateral deviation both with accurate and inaccurate disturbance assumptions and even when driving in previously unexplored environments.

In this work we consider the hybrid Data-Driven Computational Mechanics (DDCM) approach, in which a smooth constitutive manifold is reconstructed to obtain a well-behaved nonlinear optimization problem (NLP) rather than the much harder discrete-continous NLP (DCNLP) of the direct DDCM approach. The key focus is on the addition of geometric inequality constraints to the hybrid DDCM formulation. Therein, the required constraint force leads to a contact problem in the form of a mathematical program with complementarity constraints (MPCC), a problem class that is still less complex than the DCNLP. For this MPCC we propose a heuristic quick-shot solution approach, which can produce verifiable solutions by solving up to four NLPs. We perform various numerical experiments on three different contact problems of increasing difficulty to demonstrate the potential and limitations of this approach.

In this paper, we present a Riemannian Motion Policy (RMP)flow-based whole-body control framework for improved dynamic legged locomotion. RMPflow is a differential geometry-inspired algorithm for fusing multiple task-space policies (RMPs) into a configuration space policy in a geometrically consistent manner. RMP-based approaches are especially suited for designing simultaneous tracking and collision avoidance behaviors and have been successfully deployed on serial manipulators. However, one caveat of RMPflow is that it is designed with fully actuated systems in mind. In this work, we, for the first time, extend it to the domain of dynamic-legged systems, which have unforgiving under-actuation and limited control input. Thorough push recovery experiments are conducted in simulation to validate the overall framework. We show that expanding the valid stepping region with an RMP-based collision-avoidance swing leg controller improves balance robustness against external disturbances by up to 53\% compared to a baseline approach using a restricted stepping region. Furthermore, a point-foot biped robot is purpose-built for experimental studies of dynamic biped locomotion. A preliminary unassisted in-place stepping experiment is conducted to show the viability of the control framework and hardware.

A major driver of AI products today is the fact that new skills emerge in language models when their parameter set and training corpora are scaled up. This phenomenon is poorly understood, and a mechanistic explanation via mathematical analysis of gradient-based training seems difficult. The current paper takes a different approach, analysing emergence using the famous (and empirical) Scaling Laws of LLMs and a simple statistical framework. Contributions include: (a) A statistical framework that relates cross-entropy loss of LLMs to competence on the basic skills that underlie language tasks. (b) Mathematical analysis showing that the Scaling Laws imply a strong form of inductive bias that allows the pre-trained model to learn very efficiently. We informally call this {\em slingshot generalization} since naively viewed it appears to give competence levels at skills that violate usual generalization theory. (c) A key example of slingshot generalization, that competence at executing tasks involving $k$-tuples of skills emerges essentially at the same scaling and same rate as competence on the elementary skills themselves.

Successfully training Physics Informed Neural Networks (PINNs) for highly nonlinear PDEs on complex 3D domains remains a challenging task. In this paper, PINNs are employed to solve the 3D incompressible Navier-Stokes (NS) equations at moderate to high Reynolds numbers for complex geometries. The presented method utilizes very sparsely distributed solution data in the domain. A detailed investigation on the effect of the amount of supplied data and the PDE-based regularizers is presented. Additionally, a hybrid data-PINNs approach is used to generate a surrogate model of a realistic flow-thermal electronics design problem. This surrogate model provides near real-time sampling and was found to outperform standard data-driven neural networks when tested on unseen query points. The findings of the paper show how PINNs can be effective when used in conjunction with sparse data for solving 3D nonlinear PDEs or for surrogate modeling of design spaces governed by them.

Learning from Preferential Feedback (LfPF) plays an essential role in training Large Language Models, as well as certain types of interactive learning agents. However, a substantial gap exists between the theory and application of LfPF algorithms. Current results guaranteeing the existence of optimal policies in LfPF problems assume that both the preferences and transition dynamics are determined by a Markov Decision Process. We introduce the Direct Preference Process, a new framework for analyzing LfPF problems in partially-observable, non-Markovian environments. Within this framework, we establish conditions that guarantee the existence of optimal policies by considering the ordinal structure of the preferences. Using the von Neumann-Morgenstern Expected Utility Theorem, we show that the Direct Preference Process generalizes the standard reinforcement learning problem. Our findings narrow the gap between the empirical success and theoretical understanding of LfPF algorithms and provide future practitioners with the tools necessary for a more principled design of LfPF agents.

Data-Free Knowledge Distillation (DFKD) plays a vital role in compressing the model when original training data is unavailable. Previous works for DFKD in NLP mainly focus on distilling encoder-only structures like BERT on classification tasks, which overlook the notable progress of generative language modeling. In this work, we propose a novel DFKD framework, namely DFKD-T$^{3}$, where the pretrained generative language model can also serve as a controllable data generator for model compression. This novel framework DFKD-T$^{3}$ leads to an end-to-end learnable text-to-text framework to transform the general domain corpus to compression-friendly task data, targeting to improve both the \textit{specificity} and \textit{diversity}. Extensive experiments show that our method can boost the distillation performance in various downstream tasks such as sentiment analysis, linguistic acceptability, and information extraction. Furthermore, we show that the generated texts can be directly used for distilling other language models and outperform the SOTA methods, making our method more appealing in a general DFKD setting. Our code is available at //gitee.com/mindspore/models/tree/master/research/nlp/DFKD\_T3.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

北京阿比特科技有限公司