亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose an Invariant Extended Kalman Filter (IEKF) based Visual-Inertial Odometry (VIO) using multiple features in man-made environments. Conventional EKF-based VIO usually suffers from system inconsistency and angular drift that naturally occurs in feature-based methods. However, in man-made environments, notable structural regularities, such as lines and vanishing points, offer valuable cues for localization. To exploit these structural features effectively and maintain system consistency, we design a right invariant filter-based VIO scheme incorporating point, line, and vanishing point features. We demonstrate that the conventional additive error definition for point features can also preserve system consistency like the invariant error definition by proving a mathematically equivalent measurement model. And a similar conclusion is established for line features. Additionally, we conduct an invariant filter-based observability analysis proving that vanishing point measurement maintains unobservable directions naturally. Both simulation and real-world tests are conducted to validate our methods' pose accuracy and consistency. The experimental results validate the competitive performance of our method, highlighting its ability to deliver accurate and consistent pose estimation in man-made environments.

相關內容

Current 3D scene segmentation methods are heavily dependent on manually annotated 3D training datasets. Such manual annotations are labor-intensive, and often lack fine-grained details. Importantly, models trained on this data typically struggle to recognize object classes beyond the annotated classes, i.e., they do not generalize well to unseen domains and require additional domain-specific annotations. In contrast, 2D foundation models demonstrate strong generalization and impressive zero-shot abilities, inspiring us to incorporate these characteristics from 2D models into 3D models. Therefore, we explore the use of image segmentation foundation models to automatically generate training labels for 3D segmentation. We propose Segment3D, a method for class-agnostic 3D scene segmentation that produces high-quality 3D segmentation masks. It improves over existing 3D segmentation models (especially on fine-grained masks), and enables easily adding new training data to further boost the segmentation performance -- all without the need for manual training labels.

With the explosive increase of User Generated Content (UGC), UGC video quality assessment (VQA) becomes more and more important for improving users' Quality of Experience (QoE). However, most existing UGC VQA studies only focus on the visual distortions of videos, ignoring that the user's QoE also depends on the accompanying audio signals. In this paper, we conduct the first study to address the problem of UGC audio and video quality assessment (AVQA). Specifically, we construct the first UGC AVQA database named the SJTU-UAV database, which includes 520 in-the-wild UGC audio and video (A/V) sequences, and conduct a user study to obtain the mean opinion scores of the A/V sequences. The content of the SJTU-UAV database is then analyzed from both the audio and video aspects to show the database characteristics. We also design a family of AVQA models, which fuse the popular VQA methods and audio features via support vector regressor (SVR). We validate the effectiveness of the proposed models on the three databases. The experimental results show that with the help of audio signals, the VQA models can evaluate the perceptual quality more accurately. The database will be released to facilitate further research.

This paper presents the concepts of Artificial Intelligence, Multi-Agent-Systems, Coordination, Intelligent Robotics and Deep Reinforcement Learning. Emphasis is given on and how AI and DRL, may be efficiently used to create efficient robot skills and coordinated robotic teams, capable of performing very complex actions and tasks, such as playing a game of soccer. The paper also presents the concept of robotic soccer and the vision and structure of the RoboCup initiative with emphasis on the Humanoid Simulation 3D league and the new challenges this competition, poses. The final topics presented at the paper are based on the research developed/coordinated by the author throughout the last 22 years in the context of the FCPortugal project. The paper presents a short description of the coordination methodologies developed, such as: Strategy, Tactics, Formations, Setplays, and Coaching Languages and the use of Machine Learning to optimize the use of this concepts. The topics presented also include novel stochastic search algorithms for black box optimization and their use in the optimization of omnidirectional walking skills, robotic multi-agent learning and the creation of a humanoid kick with controlled distance. Finally, new applications using variations of the Proximal Policy Optimization algorithm and advanced modelling for robot and multi-robot learning are briefly explained with emphasis for our new humanoid sprinting and running skills and an amazing humanoid robot soccer dribbling skill. FCPortugal project enabled us to publish more than 100 papers and win several competitions in different leagues and many scientific awards at RoboCup. In total, our team won more than 40 awards in international competitions including a clear victory at the Simulation 3D League at RoboCup 2022 competition, scoring 84 goals and conceding only 2.

Recent progress in single-image 3D generation highlights the importance of multi-view coherency, leveraging 3D priors from large-scale diffusion models pretrained on Internet-scale images. However, the aspect of novel-view diversity remains underexplored within the research landscape due to the ambiguity in converting a 2D image into 3D content, where numerous potential shapes can emerge. Here, we aim to address this research gap by simultaneously addressing both consistency and diversity. Yet, striking a balance between these two aspects poses a considerable challenge due to their inherent trade-offs. This work introduces HarmonyView, a simple yet effective diffusion sampling technique adept at decomposing two intricate aspects in single-image 3D generation: consistency and diversity. This approach paves the way for a more nuanced exploration of the two critical dimensions within the sampling process. Moreover, we propose a new evaluation metric based on CLIP image and text encoders to comprehensively assess the diversity of the generated views, which closely aligns with human evaluators' judgments. In experiments, HarmonyView achieves a harmonious balance, demonstrating a win-win scenario in both consistency and diversity.

In this paper, we introduce SecQA, a novel dataset tailored for evaluating the performance of Large Language Models (LLMs) in the domain of computer security. Utilizing multiple-choice questions generated by GPT-4 based on the "Computer Systems Security: Planning for Success" textbook, SecQA aims to assess LLMs' understanding and application of security principles. We detail the structure and intent of SecQA, which includes two versions of increasing complexity, to provide a concise evaluation across various difficulty levels. Additionally, we present an extensive evaluation of prominent LLMs, including GPT-3.5-Turbo, GPT-4, Llama-2, Vicuna, Mistral, and Zephyr models, using both 0-shot and 5-shot learning settings. Our results, encapsulated in the SecQA v1 and v2 datasets, highlight the varying capabilities and limitations of these models in the computer security context. This study not only offers insights into the current state of LLMs in understanding security-related content but also establishes SecQA as a benchmark for future advancements in this critical research area.

Automated Program Repair (APR) has evolved significantly with the advent of Large Language Models (LLMs). Fine-tuning LLMs for program repair is a recent avenue of research, with many dimensions which have not been explored. Existing work mostly fine-tunes LLMs with naive code representations and is fundamentally limited in its ability to fine-tune larger LLMs. To address this problem, we propose RepairLLaMA, a novel program repair approach that combines 1) code representations for APR and 2) the state-of-the-art parameter-efficient LLM fine-tuning technique called LoRA. This results in RepairLLaMA producing a highly effective `program repair adapter' for fixing bugs with language models. Our experiments demonstrate the validity of both concepts. First, fine-tuning adapters with program repair specific code representations enables the model to use meaningful repair signals. Second, parameter-efficient fine-tuning helps fine-tuning to converge and contributes to the effectiveness of the repair adapter to fix data-points outside the fine-tuning data distribution. Overall, RepairLLaMA correctly fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming all baselines.

In this paper, we present our finding that prepending a Task-Agnostic Prefix Prompt (TAPP) to the input improves the instruction-following ability of various Large Language Models (LLMs) during inference. TAPP is different from canonical prompts for LLMs in that it is a fixed prompt prepended to the beginning of every input regardless of the target task for zero-shot generalization. We observe that both base LLMs (i.e. not fine-tuned to follow instructions) and instruction-tuned models benefit from TAPP, resulting in 34.58% and 12.26% improvement on average, respectively. This implies that the instruction-following ability of LLMs can be improved during inference time with a fixed prompt constructed with simple heuristics. We hypothesize that TAPP assists language models to better estimate the output distribution by focusing more on the instruction of the target task during inference. In other words, such ability does not seem to be sufficiently activated in not only base LLMs but also many instruction-fine-tuned LLMs. All experiments are reproducible from //github.com/seonghyeonye/TAPP.

In this paper, we tackle the new task of video-based Activated Muscle Group Estimation (AMGE) aiming at identifying active muscle regions during physical activity in the wild. To this intent, we provide the MuscleMap dataset featuring >15K video clips with 135 different activities and 20 labeled muscle groups. This dataset opens the vistas to multiple video-based applications in sports and rehabilitation medicine under flexible environment constraints. The proposed MuscleMap dataset is constructed with YouTube videos, specifically targeting High-Intensity Interval Training (HIIT) physical exercise in the wild. To make the AMGE model applicable in real-life situations, it is crucial to ensure that the model can generalize well to numerous types of physical activities not present during training and involving new combinations of activated muscles. To achieve this, our benchmark also covers an evaluation setting where the model is exposed to activity types excluded from the training set. Our experiments reveal that the generalizability of existing architectures adapted for the AMGE task remains a challenge. Therefore, we also propose a new approach, TransM3E, which employs a multi-modality feature fusion mechanism between both the video transformer model and the skeleton-based graph convolution model with novel cross-modal knowledge distillation executed on multi-classification tokens. The proposed method surpasses all popular video classification models when dealing with both, previously seen and new types of physical activities. The contributed dataset and code are made publicly available at //github.com/KPeng9510/MuscleMap.

We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司