亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Online design communities, where members exchange free-form views on others' designs, offer a space for beginners to learn visual design. However, the content of these communities is often unorganized for learners, containing many redundancies and irrelevant comments. In this paper, we propose a computational approach for leveraging online design communities to run a conversational agent that assists informal learning of visual elements (e.g., color and space). Our method extracts critiques, suggestions, and rationales on visual elements from comments. We present DesignQuizzer, which asks questions about visual design in UI examples and provides structured comment summaries. Two user studies demonstrate the engagement and usefulness of DesignQuizzer compared with the baseline (reading reddit.com/r/UI_design). We also showcase how effectively novices can apply what they learn with DesignQuizzer in a design critique task and a visual design task. We discuss how to use our approach with other communities and offer design considerations for community-powered learning support tools.

相關內容

Post-processing mitigation techniques for group fairness generally adjust the decision threshold of a base model in order to improve fairness. Methods in this family exhibit several advantages that make them appealing in practice: post-processing requires no access to the model training pipeline, is agnostic to the base model architecture, and offers a reduced computation cost compared to in-processing. Despite these benefits, existing methods face other challenges that limit their applicability: they require knowledge of the sensitive attributes at inference time and are oftentimes outperformed by in-processing. In this paper, we propose a general framework to transform any in-processing method with a penalized objective into a post-processing procedure. The resulting method is specifically designed to overcome the aforementioned shortcomings of prior post-processing approaches. Furthermore, we show theoretically and through extensive experiments on real-world data that the resulting post-processing method matches or even surpasses the fairness-error trade-off offered by the in-processing counterpart.

We study building embodied agents for open-ended creative tasks. While existing methods build instruction-following agents that can perform diverse open-ended tasks, none of them demonstrates creativity -- the ability to give novel and diverse task solutions implicit in the language instructions. This limitation comes from their inability to convert abstract language instructions into concrete task goals in the environment and perform long-horizon planning for such complicated goals. Given the observation that humans perform creative tasks with the help of imagination, we propose a class of solutions for creative agents, where the controller is enhanced with an imaginator that generates detailed imaginations of task outcomes conditioned on language instructions. We introduce several approaches to implementing the components of creative agents. We implement the imaginator with either a large language model for textual imagination or a diffusion model for visual imagination. The controller can either be a behavior-cloning policy learned from data or a pre-trained foundation model generating executable codes in the environment. We benchmark creative tasks with the challenging open-world game Minecraft, where the agents are asked to create diverse buildings given free-form language instructions. In addition, we propose novel evaluation metrics for open-ended creative tasks utilizing GPT-4V, which holds many advantages over existing metrics. We perform a detailed experimental analysis of creative agents, showing that creative agents are the first AI agents accomplishing diverse building creation in the survival mode of Minecraft. Our benchmark and models are open-source for future research on creative agents (//github.com/PKU-RL/Creative-Agents).

We introduce AMAGO, an in-context Reinforcement Learning (RL) agent that uses sequence models to tackle the challenges of generalization, long-term memory, and meta-learning. Recent works have shown that off-policy learning can make in-context RL with recurrent policies viable. Nonetheless, these approaches require extensive tuning and limit scalability by creating key bottlenecks in agents' memory capacity, planning horizon, and model size. AMAGO revisits and redesigns the off-policy in-context approach to successfully train long-sequence Transformers over entire rollouts in parallel with end-to-end RL. Our agent is uniquely scalable and applicable to a wide range of problems. We demonstrate its strong performance empirically in meta-RL and long-term memory domains. AMAGO's focus on sparse rewards and off-policy data also allows in-context learning to extend to goal-conditioned problems with challenging exploration. When combined with a novel hindsight relabeling scheme, AMAGO can solve a previously difficult category of open-world domains, where agents complete many possible instructions in procedurally generated environments. We evaluate our agent on three goal-conditioned domains and study how its individual improvements connect to create a generalist policy.

Deep reinforcement learning offers notable benefits in addressing combinatorial problems over traditional solvers, reducing the reliance on domain-specific knowledge and expert solutions, and improving computational efficiency. Despite the recent surge in interest in neural combinatorial optimization, practitioners often do not have access to a standardized code base. Moreover, different algorithms are frequently based on fragmentized implementations that hinder reproducibility and fair comparison. To address these challenges, we introduce RL4CO, a unified Reinforcement Learning (RL) for Combinatorial Optimization (CO) library. We employ state-of-the-art software and best practices in implementation, such as modularity and configuration management, to be flexible, easily modifiable, and extensible by researchers. Thanks to our unified codebase, we benchmark baseline RL solvers with different evaluation schemes on zero-shot performance, generalization, and adaptability on diverse tasks. Notably, we find that some recent methods may fall behind their predecessors depending on the evaluation settings. We hope RL4CO will encourage the exploration of novel solutions to complex real-world tasks, allowing the community to compare with existing methods through a unified framework that decouples the science from software engineering. We open-source our library at //github.com/ai4co/rl4co.

Stock prices forecasting has always been a challenging task. Although many research projects adopt machine learning and deep learning algorithms to address the problem, few of them pay attention to the varying degrees of dependencies between stock prices. In this paper we introduce a hybrid model that improves stock price prediction by emphasizing the dependencies between adjacent stock prices. The proposed model, ResNLS, is mainly composed of two neural architectures, ResNet and LSTM. ResNet serves as a feature extractor to identify dependencies between stock prices across time windows, while LSTM analyses the initial time-series data with the combination of dependencies which considered as residuals. In predicting the SSE Composite Index, our experiment reveals that when the closing price data for the previous 5 consecutive trading days is used as the input, the performance of the model (ResNLS-5) is optimal compared to those with other inputs. Furthermore, ResNLS-5 outperforms vanilla CNN, RNN, LSTM, and BiLSTM models in terms of prediction accuracy. It also demonstrates at least a 20% improvement over the current state-of-the-art baselines. To verify whether ResNLS-5 can help clients effectively avoid risks and earn profits in the stock market, we construct a quantitative trading framework for back testing. The experimental results show that the trading strategy based on predictions from ResNLS-5 can successfully mitigate losses during declining stock prices and generate profits in the periods of rising stock prices.

Software development teams establish elaborate continuous integration pipelines containing automated test cases to accelerate the development process of software. Automated tests help to verify the correctness of code modifications decreasing the response time to changing requirements. However, when the software teams do not track the performance impact of pending modifications, they may need to spend considerable time refactoring existing code. This paper presents PACE, a program analysis framework that provides continuous feedback on the performance impact of pending code updates. We design performance microbenchmarks by mapping the execution time of functional test cases given a code update. We map microbenchmarks to code stylometry features and feed them to predictors for performance predictions. Our experiments achieved significant performance in predicting code performance, outperforming current state-of-the-art by 75% on neural-represented code stylometry features.

Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers' computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5$\times$ higher throughput than Transformers) and linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches Transformers twice its size, both in pretraining and downstream evaluation.

Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: //github.com/apexrl/Diff4RLSurvey .

Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.

The cross-domain recommendation technique is an effective way of alleviating the data sparsity in recommender systems by leveraging the knowledge from relevant domains. Transfer learning is a class of algorithms underlying these techniques. In this paper, we propose a novel transfer learning approach for cross-domain recommendation by using neural networks as the base model. We assume that hidden layers in two base networks are connected by cross mappings, leading to the collaborative cross networks (CoNet). CoNet enables dual knowledge transfer across domains by introducing cross connections from one base network to another and vice versa. CoNet is achieved in multi-layer feedforward networks by adding dual connections and joint loss functions, which can be trained efficiently by back-propagation. The proposed model is evaluated on two real-world datasets and it outperforms baseline models by relative improvements of 3.56\% in MRR and 8.94\% in NDCG, respectively.

北京阿比特科技有限公司