亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers the unstructured sparse recovery problems in a general form. Examples include rational approximation, spectral function estimation, Fourier inversion, Laplace inversion, and sparse deconvolution. The main challenges are the noise in the sample values and the unstructured nature of the sample locations. This paper proposes the eigenmatrix, a data-driven construction with desired approximate eigenvalues and eigenvectors. The eigenmatrix offers a new way for these sparse recovery problems. Numerical results are provided to demonstrate the efficiency of the proposed method.

相關內容

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

This paper proposes two approaches for reducing the impact of the error floor phenomenon when decoding quantum low-density parity-check codes with belief propagation based algorithms. First, a low-complexity syndrome-based linear programming (SB-LP) decoding algorithm is proposed, and second, the proposed SB-LP is applied as a post-processing step after syndrome-based min-sum (SB-MS) decoding. For the latter case, a new early stopping criterion is introduced to decide when to activate the SB-LP algorithm, avoiding executing a predefined maximum number of iterations for the SB-MS decoder. Simulation results show, for a sample hypergraph code, that the proposed decoder can lower the error floor by two to three orders of magnitude compared to SB-MS for the same total number of decoding iterations.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

We provide a novel approach to achieving a desired outcome in a coordination game: the original 2x2 game is embedded in a 2x3 game where one of the players may use a third action. For a large set of payoff values only one of the Nash equilibria of the original 2x2 game is stable under replicator dynamics. We show that this Nash equilibrium is the {\omega}-limit of all initial conditions in the interior of the state space for the modified 2x3 game. Thus, the existence of a third action for one of the players, although not used, allows both players to coordinate on one Nash equilibrium. This Nash equilibrium is the one preferred by, at least, the player with access to the new action. This approach deals with both coordination failure (players choose the payoff-dominant Nash equilibrium, if such a Nash equilibrium exists) and miscoordination (players do not use mixed strategies).

Power posteriors "robustify" standard Bayesian inference by raising the likelihood to a constant fractional power, effectively downweighting its influence in the calculation of the posterior. Power posteriors have been shown to be more robust to model misspecification than standard posteriors in many settings. Previous work has shown that power posteriors derived from low-dimensional, parametric locally asymptotically normal models are asymptotically normal (Bernstein-von Mises) even under model misspecification. We extend these results to show that the power posterior moments converge to those of the limiting normal distribution suggested by the Bernstein-von Mises theorem. We then use this result to show that the mean of the power posterior, a point estimator, is asymptotically equivalent to the maximum likelihood estimator.

The R package robusTest offers corrected versions of several common tests in bivariate statistics. We point out the limitations of these tests in their classical versions, some of which are well known such as robustness or calibration problems, and provide simple alternatives that can be easily used instead. The classical tests and theirs robust alternatives are compared through a small simulation study. The latter emphasizes the superiority of robust versions of the test of interest. Finally, an illustration of correlation's tests on a real data set is also provided.

This paper studies linear time series regressions with many regressors. Weak exogeneity is the most used identifying assumption in time series. Weak exogeneity requires the structural error to have zero conditional expectation given the present and past regressor values, allowing errors to correlate with future regressor realizations. We show that weak exogeneity in time series regressions with many controls may produce substantial biases and even render the least squares (OLS) estimator inconsistent. The bias arises in settings with many regressors because the normalized OLS design matrix remains asymptotically random and correlates with the regression error when only weak (but not strict) exogeneity holds. This bias's magnitude increases with the number of regressors and their average autocorrelation. To address this issue, we propose an innovative approach to bias correction that yields a new estimator with improved properties relative to OLS. We establish consistency and conditional asymptotic Gaussianity of this new estimator and provide a method for inference.

We introduce a new discretization based on the Trefftz-DG method for solving the Stokes equations. Discrete solutions of a corresponding method fulfill the Stokes equation pointwise within each element and yield element-wise divergence-free solutions. Compared to standard DG methods, a strong reduction of the degrees of freedom is achieved, especially for higher order polynomial degrees. In addition, in contrast to many other Trefftz-DG methods, our approach allows to easily incorporate inhomogeneous right hand sides (driving forces) by using the concept of the embedded Trefftz-DG method. On top of a detailed a priori error analysis, we further compare our approach to standard discontinuous Galerkin Stokes discretizations and present numerical examples.

We develop the Akhiezer iteration, a generalization of the classical Chebyshev iteration, for the inner product-free, iterative solution of indefinite linear systems using orthogonal polynomials for measures supported on multiple, disjoint intervals. The iteration applies to shifted linear solves and can then be used for efficient matrix function approximation. Using the asymptotics of orthogonal polynomials, error bounds are provided. A key component in the efficiency of the method is the ability to compute the first $k$ orthogonal polynomial recurrence coefficients and the first $k$ weighted Stieltjes transforms of these orthogonal polynomials in $\mathrm{O}(k)$ complexity using a numerical Riemann--Hilbert approach. For a special class of orthogonal polynomials, the Akhiezer polynomials, the method can be sped up significantly, with the greatest speedup occurring in the two interval case where important formulae of Akhiezer are employed and the Riemann--Hilbert approach is bypassed.

Human participants play a central role in the development of modern artificial intelligence (AI) technology, in psychological science, and in user research. Recent advances in generative AI have attracted growing interest to the possibility of replacing human participants in these domains with AI surrogates. We survey several such "substitution proposals" to better understand the arguments for and against substituting human participants with modern generative AI. Our scoping review indicates that the recent wave of these proposals is motivated by goals such as reducing the costs of research and development work and increasing the diversity of collected data. However, these proposals ignore and ultimately conflict with foundational values of work with human participants: representation, inclusion, and understanding. This paper critically examines the principles and goals underlying human participation to help chart out paths for future work that truly centers and empowers participants.

北京阿比特科技有限公司