亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Background: Since the launch of various generative AI tools, scientists have been striving to evaluate their capabilities and contents, in the hope of establishing trust in their generative abilities. Regulations and guidelines are emerging to verify generated contents and identify novel uses. Objective: we aspire to demonstrate how ChatGPT claims are checked computationally using the rigor of network models. We aim to achieve fact-checking of the knowledge embedded in biological graphs that were contrived from ChatGPT contents at the aggregate level. Methods: We adopted a biological networks approach that enables the systematic interrogation of ChatGPT's linked entities. We designed an ontology-driven fact-checking algorithm that compares biological graphs constructed from approximately 200,000 PubMed abstracts with counterparts constructed from a dataset generated using the ChatGPT-3.5 Turbo model. Results: in 10-samples of 250 randomly selected records a ChatGPT dataset of 1000 "simulated" articles, the fact-checking link accuracy ranged from 70% to 86%. The computational process was followed by a manual process using IntAct Interaction database and the Gene regulatory network database (GRNdb) to confirm the validity of the links identified computationally. We also found that the proximity of the edges of ChatGPT graphs were significantly shorter (90 -- 153) while literature distances were (236 -- 765). This pattern held true in all 10-samples. Conclusion: This study demonstrated high accuracy of aggregate disease-gene links relationships found in ChatGPT-generated texts. The strikingly consistent pattern offers an illuminate new biological pathways that may open the door for new research opportunities.

相關內容

With the increasing importance of data and artificial intelligence, organizations strive to become more data-driven. However, current data architectures are not necessarily designed to keep up with the scale and scope of data and analytics use cases. In fact, existing architectures often fail to deliver the promised value associated with them. Data mesh is a socio-technical, decentralized, distributed concept for enterprise data management. As the concept of data mesh is still novel, it lacks empirical insights from the field. Specifically, an understanding of the motivational factors for introducing data mesh, the associated challenges, implementation strategies, its business impact, and potential archetypes is missing. To address this gap, we conduct 15 semi-structured interviews with industry experts. Our results show, among other insights, that organizations have difficulties with the transition toward federated governance associated with the data mesh concept, the shift of responsibility for the development, provision, and maintenance of data products, and the comprehension of the overall concept. In our work, we derive multiple implementation strategies and suggest organizations introduce a cross-domain steering unit, observe the data product usage, create quick wins in the early phases, and favor small dedicated teams that prioritize data products. While we acknowledge that organizations need to apply implementation strategies according to their individual needs, we also deduct two archetypes that provide suggestions in more detail. Our findings synthesize insights from industry experts and provide researchers and professionals with preliminary guidelines for the successful adoption of data mesh.

During Automated Program Repair (APR), it can be challenging to synthesize correct patches for real-world systems in general-purpose programming languages. Recent Large Language Models (LLMs) have been shown to be helpful "copilots" in assisting developers with various coding tasks, and have also been directly applied for patch synthesis. However, most LLMs treat programs as sequences of tokens, meaning that they are ignorant of the underlying semantics constraints of the target programming language. This results in plenty of statically invalid generated patches, impeding the practicality of the technique. Therefore, we propose Repilot, a general code generation framework to further copilot the AI "copilots" (i.e., LLMs) by synthesizing more valid patches during the repair process. Our key insight is that many LLMs produce outputs autoregressively (i.e., token by token), resembling human writing programs, which can be significantly boosted and guided through a Completion Engine. Repilot synergistically synthesizes a candidate patch through the interaction between an LLM and a Completion Engine, which 1) prunes away infeasible tokens suggested by the LLM and 2) proactively completes the token based on the suggestions provided by the Completion Engine. Our evaluation on a subset of the widely-used Defects4j 1.2 and 2.0 datasets shows that Repilot outperforms state-of-the-art techniques by fixing 27% and 47% more bugs, respectively. Moreover, Repilot produces more valid and correct patches than the base LLM with the same budget. While we focus on leveraging Repilot for APR in this work, the overall approach is also generalizable to other code generation tasks.

The quest for human imitative AI has been an enduring topic in AI research since its inception. The technical evolution and emerging capabilities of the latest cohort of large language models (LLMs) have reinvigorated the subject beyond academia to the cultural zeitgeist. While recent NLP evaluation benchmark tasks test some aspects of human-imitative behaviour (e.g., BIG-bench's 'human-like behavior' tasks), few, if not none, examine creative problem solving abilities. Creative problem solving in humans is a well-studied topic in cognitive neuroscience with standardized tests that predominantly use the ability to associate (heterogeneous) connections among clue words as a metric for creativity. Exposure to misleading stimuli - distractors dubbed red herrings - impede human performance in such tasks via the fixation effect and Einstellung paradigm. In cognitive neuroscience studies, such fixations are experimentally induced by pre-exposing participants to orthographically similar incorrect words to subsequent word-fragments or clues. The popular British quiz show Only Connect's Connecting Wall segment essentially mimics Mednick's Remote Associates Test (RAT) formulation with built-in, deliberate red herrings, which makes it an ideal proxy dataset to explore and study fixation effect and Einstellung paradigm from cognitive neuroscience in LLMs. In this paper we present the novel Only Connect Wall (OCW) dataset and report results from our evaluation of selected pre-trained language models and LLMs on creative problem solving tasks like grouping clue words by heterogeneous connections, and identifying correct open knowledge domain connections in respective groups. We synthetically generate two additional datasets: OCW-Randomized, OCW-WordNet to further analyze our red-herrings hypothesis in language models. The code and link to the dataset are available at //github.com/TaatiTeam/OCW.

Though data cleaning systems have earned great success and wide spread in both academia and industry, they fall short when trying to clean spatial data. The main reason is that state-of-the-art data cleaning systems mainly rely on functional dependency rules where there is sufficient co-occurrence of value pairs to learn that a certain value of an attribute leads to a corresponding value of another attribute. However, for spatial attributes that represent locations on the form of <latitude, longitude>, there is very little chance that two records would have the same exact coordinates, and hence co-occurrence would unlikely to exist. This paper presents Sparcle~(SPatially-AwaRe CLEaning); a novel framework that injects spatial awareness into the core engine of rule-based data cleaning systems as a means of boosting their accuracy. Sparcle injects two main spatial concepts into the core engine of data cleaning systems: (1) Spatial Neighborhood, where co-occurrence is relaxed to be within a certain spatial proximity rather than same exact value, and (2) Distance Weighting, where records are given different weights of whether they satisfy a dependency rule, based on their relative distance. Experimental results using a real deployment of Sparcle inside a state-of-the-art data cleaning system, and real and synthetic datasets, show that Sparcle significantly boosts the accuracy of data cleaning systems when dealing with spatial data.

Self-supervised learning has been actively studied in time series domain recently, especially for masked reconstruction. Most of these methods follow the "Pre-training + Fine-tuning" paradigm in which a new decoder replaces the pre-trained decoder to fit for a specific downstream task, leading to inconsistency of upstream and downstream tasks. In this paper, we first point out that the unification of task objectives and adaptation for task difficulty are critical for bridging the gap between time series masked reconstruction and forecasting. By reserving the pre-trained mask token during fine-tuning stage, the forecasting task can be taken as a special case of masked reconstruction, where the future values are masked and reconstructed based on history values. It guarantees the consistency of task objectives but there is still a gap in task difficulty. Because masked reconstruction can utilize contextual information while forecasting can only use historical information to reconstruct. To further mitigate the existed gap, we propose a simple yet effective prompt token tuning (PT-Tuning) paradigm, in which all pre-trained parameters are frozen and only a few trainable prompt tokens are added to extended mask tokens in element-wise manner. Extensive experiments on real-world datasets demonstrate the superiority of our proposed paradigm with state-of-the-art performance compared to representation learning and end-to-end supervised forecasting methods.

In the pursuit of accurate experimental and computational data while minimizing effort, there is a constant need for high-fidelity results. However, achieving such results often requires significant computational resources. To address this challenge, this paper proposes a deep operator learning-based framework that requires a limited high-fidelity dataset for training. We introduce a novel physics-guided, bi-fidelity, Fourier-featured Deep Operator Network (DeepONet) framework that effectively combines low and high-fidelity datasets, leveraging the strengths of each. In our methodology, we began by designing a physics-guided Fourier-featured DeepONet, drawing inspiration from the intrinsic physical behavior of the target solution. Subsequently, we train this network to primarily learn the low-fidelity solution, utilizing an extensive dataset. This process ensures a comprehensive grasp of the foundational solution patterns. Following this foundational learning, the low-fidelity deep operator network's output is enhanced using a physics-guided Fourier-featured residual deep operator network. This network refines the initial low-fidelity output, achieving the high-fidelity solution by employing a small high-fidelity dataset for training. Notably, in our framework, we employ the Fourier feature network as the Trunk network for the DeepONets, given its proficiency in capturing and learning the oscillatory nature of the target solution with high precision. We validate our approach using a well-known 2D benchmark cylinder problem, which aims to predict the time trajectories of lift and drag coefficients. The results highlight that the physics-guided Fourier-featured deep operator network, serving as a foundational building block of our framework, possesses superior predictive capability for the lift and drag coefficients compared to its data-driven counterparts.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司