This paper introduces LLAssist, an open-source tool designed to streamline literature reviews in academic research. In an era of exponential growth in scientific publications, researchers face mounting challenges in efficiently processing vast volumes of literature. LLAssist addresses this issue by leveraging Large Language Models (LLMs) and Natural Language Processing (NLP) techniques to automate key aspects of the review process. Specifically, it extracts important information from research articles and evaluates their relevance to user-defined research questions. The goal of LLAssist is to significantly reduce the time and effort required for comprehensive literature reviews, allowing researchers to focus more on analyzing and synthesizing information rather than on initial screening tasks. By automating parts of the literature review workflow, LLAssist aims to help researchers manage the growing volume of academic publications more efficiently.
This paper develops a Versatile and Honest vision language Model (VHM) for remote sensing image analysis. VHM is built on a large-scale remote sensing image-text dataset with rich-content captions (VersaD), and an honest instruction dataset comprising both factual and deceptive questions (HnstD). Unlike prevailing remote sensing image-text datasets, in which image captions focus on a few prominent objects and their relationships, VersaD captions provide detailed information about image properties, object attributes, and the overall scene. This comprehensive captioning enables VHM to thoroughly understand remote sensing images and perform diverse remote sensing tasks. Moreover, different from existing remote sensing instruction datasets that only include factual questions, HnstD contains additional deceptive questions stemming from the non-existence of objects. This feature prevents VHM from producing affirmative answers to nonsense queries, thereby ensuring its honesty. In our experiments, VHM significantly outperforms various vision language models on common tasks of scene classification, visual question answering, and visual grounding. Additionally, VHM achieves competent performance on several unexplored tasks, such as building vectorizing, multi-label classification and honest question answering. We will release the code, data and model weights at //github.com/opendatalab/VHM .
We introduce AudioBench, a universal benchmark designed to evaluate Audio Large Language Models (AudioLLMs). It encompasses 8 distinct tasks and 26 datasets, among which, 7 are newly proposed datasets. The evaluation targets three main aspects: speech understanding, audio scene understanding, and voice understanding (paralinguistic). Despite recent advancements, there lacks a comprehensive benchmark for AudioLLMs on instruction following capabilities conditioned on audio signals. AudioBench addresses this gap by setting up datasets as well as desired evaluation metrics. Besides, we also evaluated the capabilities of five popular models and found that no single model excels consistently across all tasks. We outline the research outlook for AudioLLMs and anticipate that our open-sourced evaluation toolkit, data, and leaderboard will offer a robust testbed for future model developments.
Large Language Models (LLMs) have been applied to various hardware design tasks, including Verilog code generation, EDA tool scripting, and RTL bug fixing. Despite this extensive exploration, LLMs are yet to be used for the task of post-synthesis metric reasoning and estimation of HDL designs. In this paper, we assess the ability of LLMs to reason about post-synthesis metrics of Verilog designs. We introduce MetRex, a large-scale dataset comprising 25,868 Verilog HDL designs and their corresponding post-synthesis metrics, namely area, delay, and static power. MetRex incorporates a Chain of Thought (CoT) template to enhance LLMs' reasoning about these metrics. Extensive experiments show that Supervised Fine-Tuning (SFT) boosts the LLM's reasoning capabilities on average by 37.0\%, 25.3\%, and 25.7\% on the area, delay, and static power, respectively. While SFT improves performance on our benchmark, it remains far from achieving optimal results, especially on complex problems. Comparing to state-of-the-art regression models, our approach delivers accurate post-synthesis predictions for 17.4\% more designs (within a 5\% error margin), in addition to offering a 1.7x speedup by eliminating the need for pre-processing. This work lays the groundwork for advancing LLM-based Verilog code metric reasoning.
We present OxonFair, a new open source toolkit for enforcing fairness in binary classification. Compared to existing toolkits: (i) We support NLP and Computer Vision classification as well as standard tabular problems. (ii) We support enforcing fairness on validation data, making us robust to a wide range of overfitting challenges. (iii) Our approach can optimize any measure based on True Positives, False Positive, False Negatives, and True Negatives. This makes it easily extensible and much more expressive than existing toolkits. It supports all 9 and all 10 of the decision-based group metrics of two popular review articles. (iv) We jointly optimize a performance objective alongside fairness constraints. This minimizes degradation while enforcing fairness, and even improves the performance of inadequately tuned unfair baselines. OxonFair is compatible with standard ML toolkits, including sklearn, Autogluon, and PyTorch and is available at //github.com/oxfordinternetinstitute/oxonfair
In the era of the Internet of Things (IoT) and data sharing, users frequently upload their personal information to enterprise databases to enjoy enhanced service experiences provided by various online services. However, the widespread presence of system vulnerabilities, remote network intrusions, and insider threats significantly increases the exposure of private enterprise data on the internet. If such data is stolen or leaked by attackers, it can result in severe asset losses and business operation disruptions. To address these challenges, this paper proposes a novel threat detection framework, TabITD. This framework integrates Intrusion Detection Systems (IDS) with User and Entity Behavior Analytics (UEBA) strategies to form a collaborative detection system that bridges the gaps in existing systems' capabilities. It effectively addresses the blurred boundaries between external and insider threats caused by the diversification of attack methods, thereby enhancing the model's learning ability and overall detection performance. Moreover, the proposed method leverages the TabNet architecture, which employs a sparse attention feature selection mechanism that allows TabNet to select the most relevant features at each decision step, thereby improving the detection of rare-class attacks. We evaluated our proposed solution on two different datasets, achieving average accuracies of 96.71% and 97.25%, respectively. The results demonstrate that this approach can effectively detect malicious behaviors such as masquerade attacks and external threats, significantly enhancing network security defenses and the efficiency of network attack detection.
Spurred by the demand for interpretable models, research on eXplainable AI for language technologies has experienced significant growth, with feature attribution methods emerging as a cornerstone of this progress. While prior work in NLP explored such methods for classification tasks and textual applications, explainability intersecting generation and speech is lagging, with existing techniques failing to account for the autoregressive nature of state-of-the-art models and to provide fine-grained, phonetically meaningful explanations. We address this gap by introducing Spectrogram Perturbation for Explainable Speech-to-text Generation (SPES), a feature attribution technique applicable to sequence generation tasks with autoregressive models. SPES provides explanations for each predicted token based on both the input spectrogram and the previously generated tokens. Extensive evaluation on speech recognition and translation demonstrates that SPES generates explanations that are faithful and plausible to humans.
We present RopeTP, a novel framework that combines Robust pose estimation with a diffusion Trajectory Prior to reconstruct global human motion from videos. At the heart of RopeTP is a hierarchical attention mechanism that significantly improves context awareness, which is essential for accurately inferring the posture of occluded body parts. This is achieved by exploiting the relationships with visible anatomical structures, enhancing the accuracy of local pose estimations. The improved robustness of these local estimations allows for the reconstruction of precise and stable global trajectories. Additionally, RopeTP incorporates a diffusion trajectory model that predicts realistic human motion from local pose sequences. This model ensures that the generated trajectories are not only consistent with observed local actions but also unfold naturally over time, thereby improving the realism and stability of 3D human motion reconstruction. Extensive experimental validation shows that RopeTP surpasses current methods on two benchmark datasets, particularly excelling in scenarios with occlusions. It also outperforms methods that rely on SLAM for initial camera estimates and extensive optimization, delivering more accurate and realistic trajectories.
This paper presents a new open-source high-fidelity dataset for Machine Learning (ML) containing 355 geometric variants of the Windsor body, to help the development and testing of ML surrogate models for external automotive aerodynamics. Each Computational Fluid Dynamics (CFD) simulation was run with a GPU-native high-fidelity Wall-Modeled Large-Eddy Simulations (WMLES) using a Cartesian immersed-boundary method using more than 280M cells to ensure the greatest possible accuracy. The dataset contains geometry variants that exhibits a wide range of flow characteristics that are representative of those observed on road-cars. The dataset itself contains the 3D time-averaged volume & boundary data as well as the geometry and force & moment coefficients. This paper discusses the validation of the underlying CFD methods as well as contents and structure of the dataset. To the authors knowledge, this represents the first, large-scale high-fidelity CFD dataset for the Windsor body with a permissive open-source license (CC-BY-SA).
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.