亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We develop a space-time mortar mixed finite element method for parabolic problems. The domain is decomposed into a union of subdomains discretized with non-matching spatial grids and asynchronous time steps. The method is based on a space-time variational formulation that couples mixed finite elements in space with discontinuous Galerkin in time. Continuity of flux (mass conservation) across space-time interfaces is imposed via a coarse-scale space-time mortar variable that approximates the primary variable. Uniqueness, existence, and stability, as well as a priori error estimates for the spatial and temporal errors are established. A space-time non-overlapping domain decomposition method is developed that reduces the global problem to a space-time coarse-scale mortar interface problem. Each interface iteration involves solving in parallel space-time subdomain problems. The spectral properties of the interface operator and the convergence of the interface iteration are analyzed. Numerical experiments are provided that illustrate the theoretical results and the flexibility of the method for modeling problems with features that are localized in space and time.

相關內容

The aim of this paper is to apply a high-order discontinuous-in-time scheme to second-order hyperbolic partial differential equations (PDEs). We first discretize the PDEs in time while keeping the spatial differential operators undiscretized. The well-posedness of this semi-discrete scheme is analyzed and a priori error estimates are derived in the energy norm. We then combine this $hp$-version discontinuous Galerkin method for temporal discretization with an $H^1$-conforming finite element approximation for the spatial variables to construct a fully discrete scheme. A prior error estimates are derived both in the energy norm and the $L^2$-norm. Numerical experiments are presented to verify the theoretical results.

We propose and analyse an augmented mixed finite element method for the Navier--Stokes equations written in terms of velocity, vorticity, and pressure with non-constant viscosity and no-slip boundary conditions. The weak formulation includes least-squares terms arising from the constitutive equation and from the incompressibility condition, and we use a fixed point strategies to show the existence and uniqueness of continuous and discrete solutions under the assumption of sufficiently small data. The method is constructed using any compatible finite element pair (conforming or non-conforming) for velocity and pressure as dictated by Stokes inf-sup stability, while for vorticity any generic discrete space (of arbitrary order) can be used. We establish optimal a priori error estimates. Finally, we provide a set of numerical tests in 2D and 3D illustrating the behaviour of the scheme as well as verifying the theoretical convergence rates.

Multi-robot systems offer enhanced capability over their monolithic counterparts, but they come at a cost of increased complexity in coordination. To reduce complexity and to make the problem tractable, multi-robot motion planning (MRMP) methods in the literature adopt de-coupled approaches that sacrifice either optimality or dynamic feasibility. In this paper, we present a convexification method, namely "parabolic relaxation", to generate optimal and dynamically feasible trajectories for MRMP in the coupled joint-space of all robots. We leverage upon the proposed relaxation to tackle the problem complexity and to attain computational tractability for planning over one hundred robots in extremely clustered environments. We take a multi-stage optimization approach that consists of i) mathematically formulating MRMP as a non-convex optimization, ii) lifting the problem into a higher dimensional space, iii) convexifying the problem through the proposed computationally efficient parabolic relaxation, and iv) penalizing with iterative search to ensure feasibility and recovery of feasible and near-optimal solutions to the original problem. Our numerical experiments demonstrate that the proposed approach is capable of generating optimal and dynamically feasible trajectories for challenging motion planning problems with higher success rate than the state-of-the-art, yet remain computationally tractable for over one hundred robots in a highly dense environment.

In this paper, the preconditioned TBiCOR and TCORS methods are presented for solving the Sylvester tensor equation. A tensor Lanczos $\mathcal{L}$-Biorthogonalization algorithm (TLB) is derived for solving the Sylvester tensor equation. Two improved TLB methods are presented. One is the biconjugate $\mathcal{L}$-orthogonal residual algorithm in tensor form (TBiCOR), which implements the $LU$ decomposition for the triangular coefficient matrix derived by the TLB method. The other is the conjugate $\mathcal{L}$-orthogonal residual squared algorithm in tensor form (TCORS), which introduces a square operator to the residual of the TBiCOR algorithm. A preconditioner based on the nearest Kronecker product is used to accelerate the TBiCOR and TCORS algorithms, and we obtain the preconditioned TBiCOR algorithm (PTBiCOR) and preconditioned TCORS algorithm (PTCORS). The proposed algorithms are proved to be convergent within finite steps of iteration without roundoff errors. Several examples illustrate that the preconditioned TBiCOR and TCORS algorithms present excellent convergence.

We propose and analyze volume-preserving parametric finite element methods for surface diffusion, conserved mean curvature flow and an intermediate evolution law in an axisymmetric setting. The weak formulations are presented in terms of the generating curves of the axisymmetric surfaces. The proposed numerical methods are based on piecewise linear parametric finite elements. The constructed fully practical schemes satisfy the conservation of the enclosed volume. In addition, we prove the unconditional stability and consider the distribution of vertices for the discretized schemes. The introduced methods are implicit and the resulting nonlinear systems of equations can be solved very efficiently and accurately via the Newton's iterative method. Numerical results are presented to show the accuracy and efficiency of the introduced schemes for computing the considered axisymmetric geometric flows.

We develop a rapid and accurate contour method for the solution of time-fractional PDEs. The method inverts the Laplace transform via an optimised stable quadrature rule, suitable for infinite-dimensional operators, whose error decreases like $\exp(-cN/\log(N))$ for $N$ quadrature points. The method is parallisable, avoids having to resolve singularities of the solution as $t\downarrow 0$, and avoids the large memory consumption that can be a challenge for time-stepping methods applied to time-fractional PDEs. The ODEs resulting from quadrature are solved using adaptive sparse spectral methods that converge exponentially with optimal linear complexity. These solutions of ODEs are reused for different times. We provide a complete analysis of our approach for fractional beam equations used to model small-amplitude vibration of viscoelastic materials with a fractional Kelvin-Voigt stress-strain relationship. We calculate the system's energy evolution over time and the surface deformation in cases of both constant and non-constant viscoelastic parameters. An infinite-dimensional ``solve-then-discretise'' approach considerably simplifies the analysis, which studies the generalisation of the numerical range of a quasi-linearisation of a suitable operator pencil. This allows us to build an efficient algorithm with explicit error control. The approach can be readily adapted to other time-fractional PDEs and is not constrained to fractional parameters in the range $0<\nu<1$.

We introduce and analyse the first order Enlarged Enhancement Virtual Element Method (E$^2$VEM) for the Poisson problem. The method has the interesting property of allowing the definition of bilinear forms that do not require a stabilization term. We provide a proof of well-posedness and optimal order a priori error estimates. Numerical tests on convex and non-convex polygonal meshes confirm the theoretical convergence rates.

This article deals with an inverse problem of identifying the fractional order in the 1D time fractional diffusion equation (TFDE in short) using the measurement at one space-time point. Based on the expression of the solution to the forward problem, the inverse problem is transformed to a nonlinear algebraic equation. By choosing suitable initial values and the measured point, the nonlinear equation has a unique solution by the monotonicity of the Mittag-Lellfer function. Theoretical testifications are presented to demonstrate the unique solvability of the inverse problem.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

Deep reinforcement learning (RL) methods generally engage in exploratory behavior through noise injection in the action space. An alternative is to add noise directly to the agent's parameters, which can lead to more consistent exploration and a richer set of behaviors. Methods such as evolutionary strategies use parameter perturbations, but discard all temporal structure in the process and require significantly more samples. Combining parameter noise with traditional RL methods allows to combine the best of both worlds. We demonstrate that both off- and on-policy methods benefit from this approach through experimental comparison of DQN, DDPG, and TRPO on high-dimensional discrete action environments as well as continuous control tasks. Our results show that RL with parameter noise learns more efficiently than traditional RL with action space noise and evolutionary strategies individually.

北京阿比特科技有限公司