亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate the secure rate-splitting for the two-user multiple-input multiple-output (MIMO) broadcast channel with imperfect channel state information at the transmitter (CSIT) and a multiple-antenna jammer, where each receiver has equal number of antennas and the jammer has perfect channel state information (CSI). Specifically, we design the secure rate-splitting multiple-access in this scenario, where the security of splitted private and common messages is ensured by precoder design with joint nulling and aligning the leakage information, regarding to different antenna configurations. As a result, we show that the sum-secure degrees-of-freedom (SDoF) achieved by secure rate-splitting outperforms that by conventional zero-forcing. Therefore, we validate the superiority of rate-splitting for the secure purpose in the two-user MIMO broadcast channel with imperfect CSIT and a jammer.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 拉格朗日乘子 · 目標函數 · Performance · 泛函 ·
2022 年 4 月 19 日

The majority of internet traffic is video content. This drives the demand for video compression in order to deliver high quality video at low target bitrates. This paper investigates the impact of adjusting the rate distortion equation on compression performance. An constant of proportionality, k, is used to modify the Lagrange multiplier used in H.265 (HEVC). Direct optimisation methods are deployed to maximise BD-Rate improvement for a particular clip. This leads to up to 21% BD-Rate improvement for an individual clip. Furthermore we use a more realistic corpus of material provided by YouTube. The results show that direct optimisation using BD-rate as the objective function can lead to further gains in bitrate savings that are not available with previous approaches.

The naive importance sampling (IS) estimator generally does not work well in examples involving simultaneous inference on several targets, as the importance weights can take arbitrarily large values, making the estimator highly unstable. In such situations, alternative multiple IS estimators involving samples from multiple proposal distributions are preferred. Just like the naive IS, the success of these multiple IS estimators crucially depends on the choice of the proposal distributions. The selection of these proposal distributions is the focus of this article. We propose three methods: (i) a geometric space filling approach, (ii) a minimax variance approach, and (iii) a maximum entropy approach. The first two methods are applicable to any IS estimator, whereas the third approach is described in the context of Doss's (2010) two-stage IS estimator. For the first method, we propose a suitable measure of 'closeness' based on the symmetric Kullback-Leibler divergence, while the second and third approaches use estimates of asymptotic variances of Doss's (2010) IS estimator and Geyer's (1994) reverse logistic regression estimator, respectively. Thus, when samples from the proposal distributions are obtained by running Markov chains, we provide consistent spectral variance estimators for these asymptotic variances. The proposed methods for selecting proposal densities are illustrated using various detailed examples.

Audio captioning aims at describing the content of audio clips with human language. Due to the ambiguity of audio, different people may perceive the same audio differently, resulting in caption disparities (i.e., one audio may correlate to several captions with diverse semantics). For that, general audio captioning models achieve the one-to-many training by randomly selecting a correlated caption as the ground truth for each audio. However, it leads to a significant variation in the optimization directions and weakens the model stability. To eliminate this negative effect, in this paper, we propose a two-stage framework for audio captioning: (i) in the first stage, via the contrastive learning, we construct a proxy feature space to reduce the distances between captions correlated to the same audio, and (ii) in the second stage, the proxy feature space is utilized as additional supervision to encourage the model to be optimized in the direction that benefits all the correlated captions. We conducted extensive experiments on two datasets using four commonly used encoder and decoder architectures. Experimental results demonstrate the effectiveness of the proposed method. The code is available at //github.com/PRIS-CV/Caption-Feature-Space-Regularization.

Spectral efficiency improvement is a key focus in most wireless communication systems and achieved by various means such as using large antenna arrays and/or advanced modulation schemes and signal formats. This work proposes to further improve spectral efficiency through combining non-orthogonal spectrally efficient frequency division multiplexing (SEFDM) systems with index modulation (IM), which can efficiently make use of the indices of activated subcarriers as communication information. Recent research has verified that IM may be used with SEFDM to alleviate inter-carrier interference (ICI) and improve error performance. This work proposes new SEFDM signal formats based on novel activation pattern designs, which limit the locations of activated subcarriers and enable a variable number of activated subcarriers in each SEFDM subblock. SEFDM-IM system designs are developed by jointly considering activation patterns, modulation schemes and signal waveform formats, with a set of solutions evaluated under different spectral efficiency scenarios. Detailed modelling of coded systems and simulation studies reveal that the proposed designs not only lead to better bit error rate (BER) but also lower peak-to-average power ratio (PAPR) and reduced computational complexity relative to other reported index-modulated systems.

We propose a multiple-splitting projection test (MPT) for one-sample mean vectors in high-dimensional settings. The idea of projection test is to project high-dimensional samples to a 1-dimensional space using an optimal projection direction such that traditional tests can be carried out with projected samples. However, estimation of the optimal projection direction has not been systematically studied in the literature. In this work, we bridge the gap by proposing a consistent estimation via regularized quadratic optimization. To retain type I error rate, we adopt a data-splitting strategy when constructing test statistics. To mitigate the power loss due to data-splitting, we further propose a test via multiple splits to enhance the testing power. We show that the $p$-values resulted from multiple splits are exchangeable. Unlike existing methods which tend to conservatively combine dependent $p$-values, we develop an exact level $\alpha$ test that explicitly utilizes the exchangeability structure to achieve better power. Numerical studies show that the proposed test well retains the type I error rate and is more powerful than state-of-the-art tests.

In large scale dynamic wireless networks, the amount of overhead caused by channel estimation (CE) is becoming one of the main performance bottlenecks. This is due to the large number users whose channels should be estimated, the user mobility, and the rapid channel change caused by the usage of the high-frequency spectrum (e.g. millimeter wave). In this work, we propose a new hybrid channel estimation/prediction (CEP) scheme to reduce overhead in time-division duplex (TDD) wireless cell-free massive multiple-input-multiple-output (mMIMO) systems. The scheme proposes sending a pilot signal from each user only once in a given number (window) of coherence intervals (CIs). Then minimum mean-square error (MMSE) estimation is used to estimate the channel of this CI, while a deep neural network (DNN) is used to predict the channels of the remaining CIs in the window. The DNN exploits the temporal correlation between the consecutive CIs and the received pilot signals to improve the channel prediction accuracy. By doing so, CE overhead is reduced by at least 50 percent at the expense of negligible CE error for practical user mobility settings. Consequently, the proposed CEP scheme improves the spectral efficiency compared to the conventional MMSE CE approach, especially when the number of users is large, which is demonstrated numerically.

Multihop relaying is a potential technique to mitigate channel impairments in optical wireless communications (OWC). In this paper, multiple fixed-gain amplify-and-forward (AF) relays are employed to enhance the OWC performance under the combined effect of atmospheric turbulence, pointing errors, and fog. We consider a long-range OWC link by modeling the atmospheric turbulence by the Fisher-Snedecor ${\cal{F}}$ distribution, pointing errors by the generalized non-zero boresight model, and random path loss due to fog. We also consider a short-range OWC system by ignoring the impact of atmospheric turbulence. We derive novel upper bounds on the probability density function (PDF) and cumulative distribution function (CDF) of the end-to-end signal-to-noise ratio (SNR) for both short and long-range multihop OWC systems by developing exact statistical results for a single-hop OWC system under the combined effect of ${\cal{F}}$-turbulence channels, non-zero boresight pointing errors, and fog-induced fading. Based on these expressions, we present analytical expressions of outage probability (OP) and average bit-error-rate (ABER) performance for the considered OWC systems involving single-variate Fox's H and Meijer's G functions. Moreover, asymptotic expressions of the outage probability in high SNR region are developed using simpler Gamma functions to provide insights on the effect of channel and system parameters. The derived analytical expressions are validated through Monte-Carlo simulations, and the scaling of the OWC performance with the number of relay nodes is demonstrated with a comparison to the single-hop transmission.

The fact that the millimeter-wave (mmWave) multiple-input multiple-output (MIMO) channel has sparse support in the spatial domain has motivated recent compressed sensing (CS)-based mmWave channel estimation methods, where the angles of arrivals (AoAs) and angles of departures (AoDs) are quantized using angle dictionary matrices. However, the existing CS-based methods usually obtain the estimation result through one-stage channel sounding that have two limitations: (i) the requirement of large-dimensional dictionary and (ii) unresolvable quantization error. These two drawbacks are irreconcilable; improvement of the one implies deterioration of the other. To address these challenges, we propose, in this paper, a two-stage method to estimate the AoAs and AoDs of mmWave channels. In the proposed method, the channel estimation task is divided into two stages, Stage I and Stage II. Specifically, in Stage I, the AoAs are estimated by solving a multiple measurement vectors (MMV) problem. In Stage II, based on the estimated AoAs, the receive sounders are designed to estimate AoDs. The dimension of the angle dictionary in each stage can be reduced, which in turn reduces the computational complexity substantially. We then analyze the successful recovery probability (SRP) of the proposed method, revealing the superiority of the proposed framework over the existing one-stage CS-based methods. We further enhance the reconstruction performance by performing resource allocation between the two stages. We also overcome the unresolvable quantization error issue present in the prior techniques by applying the atomic norm minimization method to each stage of the proposed two-stage approach. The simulation results illustrate the substantially improved performance with low complexity of the proposed two-stage method.

We introduce FRAT, a new proof format for unsatisfiable SAT problems, and its associated toolchain. Compared to DRAT, the FRAT format allows solvers to include more information in proofs to reduce the computational cost of subsequent elaboration to LRAT. The format is easy to parse forward and backward, and it is extensible to future proof methods. The provision of optional proof steps allows SAT solver developers to balance implementation effort against elaboration time, with little to no overhead on solver time. We benchmark our FRAT toolchain against a comparable DRAT toolchain and confirm >84% median reduction in elaboration time and >94% median decrease in peak memory usage.

We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.

北京阿比特科技有限公司