亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce FRAT, a new proof format for unsatisfiable SAT problems, and its associated toolchain. Compared to DRAT, the FRAT format allows solvers to include more information in proofs to reduce the computational cost of subsequent elaboration to LRAT. The format is easy to parse forward and backward, and it is extensible to future proof methods. The provision of optional proof steps allows SAT solver developers to balance implementation effort against elaboration time, with little to no overhead on solver time. We benchmark our FRAT toolchain against a comparable DRAT toolchain and confirm >84% median reduction in elaboration time and >94% median decrease in peak memory usage.

相關內容

SAT是研究者關注命題可滿足性問題的理論與應用的第一次年度會議。除了簡單命題可滿足性外,它還包括布爾優化(如MaxSAT和偽布爾(PB)約束)、量化布爾公式(QBF)、可滿足性模理論(SMT)和約束規劃(CP),用于與布爾級推理有明確聯系的問題。官網鏈接: · 估計/估計量 · state-of-the-art · Learning · 有偏 ·
2022 年 6 月 6 日

We consider experiments in dynamical systems where interventions on some experimental units impact other units through a limiting constraint (such as a limited inventory). Despite outsize practical importance, the best estimators for this `Markovian' interference problem are largely heuristic in nature, and their bias is not well understood. We formalize the problem of inference in such experiments as one of policy evaluation. Off-policy estimators, while unbiased, apparently incur a large penalty in variance relative to state-of-the-art heuristics. We introduce an on-policy estimator: the Differences-In-Q's (DQ) estimator. We show that the DQ estimator can in general have exponentially smaller variance than off-policy evaluation. At the same time, its bias is second order in the impact of the intervention. This yields a striking bias-variance tradeoff so that the DQ estimator effectively dominates state-of-the-art alternatives. From a theoretical perspective, we introduce three separate novel techniques that are of independent interest in the theory of Reinforcement Learning (RL). Our empirical evaluation includes a set of experiments on a city-scale ride-hailing simulator.

Translation of perceptual soundscape attributes from one language to another remains a challenging task that requires a high degree of fidelity in both psychoacoustic and psycholinguistic senses across the target population. Due to the inherently subjective nature of human perception, translating soundscape attributes using only small focus group discussion or expert panels could lead to translations with psycholinguistic meanings that, in a non-expert setting, deviate or distort from that of the source language. In this work, we present a quantitative evaluation method based on the circumplex model of soundscape perception to assess the overall translation quality across a set of criteria. As an initial application domain, we demonstrated the use of the quantitative evaluation framework in the context of an English-to-Thai translation of soundscape attributes.

We revisit the classical problem of finding an approximately stationary point of the average of $n$ smooth and possibly nonconvex functions. The optimal complexity of stochastic first-order methods in terms of the number of gradient evaluations of individual functions is $\mathcal{O}\left(n + n^{1/2}\varepsilon^{-1}\right)$, attained by the optimal SGD methods $\small\sf\color{green}{SPIDER}$(arXiv:1807.01695) and $\small\sf\color{green}{PAGE}$(arXiv:2008.10898), for example, where $\varepsilon$ is the error tolerance. However, i) the big-$\mathcal{O}$ notation hides crucial dependencies on the smoothness constants associated with the functions, and ii) the rates and theory in these methods assume simplistic sampling mechanisms that do not offer any flexibility. In this work we remedy the situation. First, we generalize the $\small\sf\color{green}{PAGE}$ algorithm so that it can provably work with virtually any (unbiased) sampling mechanism. This is particularly useful in federated learning, as it allows us to construct and better understand the impact of various combinations of client and data sampling strategies. Second, our analysis is sharper as we make explicit use of certain novel inequalities that capture the intricate interplay between the smoothness constants and the sampling procedure. Indeed, our analysis is better even for the simple sampling procedure analyzed in the $\small\sf\color{green}{PAGE}$ paper. However, this already improved bound can be further sharpened by a different sampling scheme which we propose. In summary, we provide the most general and most accurate analysis of optimal SGD in the smooth nonconvex regime. Finally, our theoretical findings are supposed with carefully designed experiments.

Wireless communications systems are impacted by multi-path fading and Doppler shift in dynamic environments, where the channel becomes doubly-dispersive and its estimation becomes an arduous task. Only a few pilots are used for channel estimation in conventional approaches to preserve high data rate transmission. Consequently, such estimators experience a significant performance degradation in high mobility scenarios. Recently, deep learning has been employed for doubly-dispersive channel estimation due to its low-complexity, robustness, and good generalization ability. Against this backdrop, the current paper presents a comprehensive survey on channel estimation techniques based on deep learning by deeply investigating different methods. The study also provides extensive experimental simulations followed by a computational complexity analysis. After considering different parameters such as modulation order, mobility, frame length, and deep learning architecture, the performance of the studied estimators is evaluated in several mobility scenarios. In addition, the source codes are made available online in order to make the results reproducible.

Topological Data Analysis is a growing area of data science, which aims at computing and characterizing the geometry and topology of data sets, in order to produce useful descriptors for subsequent statistical and machine learning tasks. Its main computational tool is persistent homology, which amounts to track the topological changes in growing families of subsets of the data set itself, called filtrations, and encode them in an algebraic object, called persistence module. Even though algorithms and theoretical properties of modules are now well-known in the single-parameter case, that is, when there is only one filtration to study, much less is known in the multi-parameter case, where several filtrations are given at once. Though more complicated, the resulting persistence modules are usually richer and encode more information, making them better descriptors for data science. In this article, we present the first approximation scheme, which is based on fibered barcodes and exact matchings, two constructions that stem from the theory of single-parameter persistence, for computing and decomposing general multi-parameter persistence modules. Our algorithm has controlled complexity and running time, and works in arbitrary dimension, i.e., with an arbitrary number of filtrations. Moreover, when restricting to specific classes of multi-parameter persistence modules, namely the ones that can be decomposed into intervals, we establish theoretical results about the approximation error between our estimate and the true module in terms of interleaving distance. Finally, we present empirical evidence validating output quality and speed-up on several data sets.

Solving combinatorial optimization (CO) on graphs is among the fundamental tasks for upper-stream applications in data mining, machine learning and operations research. Despite the inherent NP-hard challenge for CO, heuristics, branch-and-bound, learning-based solvers are developed to tackle CO problems as accurately as possible given limited time budgets. However, a practical metric for the sensitivity of CO solvers remains largely unexplored. Existing theoretical metrics require the optimal solution which is infeasible, and the gradient-based adversarial attack metric from deep learning is not compatible with non-learning solvers that are usually non-differentiable. In this paper, we develop the first practically feasible robustness metric for general combinatorial optimization solvers. We develop a no worse optimal cost guarantee thus do not require optimal solutions, and we tackle the non-differentiable challenge by resorting to black-box adversarial attack methods. Extensive experiments are conducted on 14 unique combinations of solvers and CO problems, and we demonstrate that the performance of state-of-the-art solvers like Gurobi can degenerate by over 20% under the given time limit bound on the hard instances discovered by our robustness metric, raising concerns about the robustness of combinatorial optimization solvers.

Realizing human-like perception is a challenge in open driving scenarios due to corner cases and visual occlusions. To gather knowledge of rare and occluded instances, federated learning empowered connected autonomous vehicle (FLCAV) has been proposed, which leverages vehicular networks to establish federated deep neural networks (DNNs) from distributed data captured by vehicles and road sensors. Without the need of data aggregation, FLCAV preserves privacy while reducing communication and annotation costs compared with conventional centralized learning. However, it is challenging to determine the network resources and road sensor poses for multi-stage training with multi-modal datasets in multi-variant scenarios. This article presents networking and training frameworks for FLCAV perception. Multi-layer graph resource allocation and vehicle-road pose contrastive methods are proposed to address the network management and sensor pose problems, respectively. We also develop CarlaFLCAV, a software platform that implements the above system and methods. Experimental results confirm the superiority of the proposed techniques compared with various benchmarks.

An operating system kernel uses cryptographically secure pseudorandom number generator for creating address space localization randomization offsets to protect memory addresses to processes from exploration, storing users' password securely and creating cryptographic keys. The paper proposes a CSPRNG called KCS-PRNG which produces non-reproducible bitstreams. The proposed KCS-PRNG presents an efficient design uniquely configured with two new non-standard and verified elliptic curves and clock-controlled linear feedback shift registers and a novel method to consistently generate non-reproducible random bits of arbitrary lengths. The generated bit streams are statistically indistinguishable from true random bitstreams and provably secure, resilient to important attacks, exhibits backward and forward secrecy, exhibits exponential linear complexity, large period and huge key space.

Nowadays, the shipbuilding industry is facing a radical change towards solutions with a smaller environmental impact. This can be achieved with low emissions engines, optimized shape designs with lower wave resistance and noise generation, and by reducing the metal raw materials used during the manufacturing. This work focuses on the last aspect by presenting a complete structural optimization pipeline for modern passenger ship hulls which exploits advanced model order reduction techniques to reduce the dimensionality of both input parameters and outputs of interest. We introduce a novel approach which incorporates parameter space reduction through active subspaces into the proper orthogonal decomposition with interpolation method. This is done in a multi-fidelity setting. We test the whole framework on a simplified model of a midship section and on the full model of a passenger ship, controlled by 20 and 16 parameters, respectively. We present a comprehensive error analysis and show the capabilities and usefulness of the methods especially during the preliminary design phase, finding new unconsidered designs while handling high dimensional parameterizations.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

北京阿比特科技有限公司