We propose a multiple-splitting projection test (MPT) for one-sample mean vectors in high-dimensional settings. The idea of projection test is to project high-dimensional samples to a 1-dimensional space using an optimal projection direction such that traditional tests can be carried out with projected samples. However, estimation of the optimal projection direction has not been systematically studied in the literature. In this work, we bridge the gap by proposing a consistent estimation via regularized quadratic optimization. To retain type I error rate, we adopt a data-splitting strategy when constructing test statistics. To mitigate the power loss due to data-splitting, we further propose a test via multiple splits to enhance the testing power. We show that the $p$-values resulted from multiple splits are exchangeable. Unlike existing methods which tend to conservatively combine dependent $p$-values, we develop an exact level $\alpha$ test that explicitly utilizes the exchangeability structure to achieve better power. Numerical studies show that the proposed test well retains the type I error rate and is more powerful than state-of-the-art tests.
We study the scaling limits of stochastic gradient descent (SGD) with constant step-size in the high-dimensional regime. We prove limit theorems for the trajectories of summary statistics (i.e., finite-dimensional functions) of SGD as the dimension goes to infinity. Our approach allows one to choose the summary statistics that are tracked, the initialization, and the step-size. It yields both ballistic (ODE) and diffusive (SDE) limits, with the limit depending dramatically on the former choices. Interestingly, we find a critical scaling regime for the step-size below which the effective ballistic dynamics matches gradient flow for the population loss, but at which, a new correction term appears which changes the phase diagram. About the fixed points of this effective dynamics, the corresponding diffusive limits can be quite complex and even degenerate. We demonstrate our approach on popular examples including estimation for spiked matrix and tensor models and classification via two-layer networks for binary and XOR-type Gaussian mixture models. These examples exhibit surprising phenomena including multimodal timescales to convergence as well as convergence to sub-optimal solutions with probability bounded away from zero from random (e.g., Gaussian) initializations.
This work studies remote state estimation of multiple linear time-invariant systems over shared wireless time-varying communication channels. We model the channel states by a semi-Markov process which captures both the random holding period of each channel state and the state transitions. The model is sufficiently general to be used in both fast and slow fading scenarios. We derive necessary and sufficient stability conditions of the multi-sensor-multi-channel system in terms of the system parameters. We further investigate how the delay of the channel state information availability and the holding period of channel states affect the stability. In particular, we show that, from a system stability perspective, fast fading channels may be preferable to slow fading ones.
High-dimensional Partial Differential Equations (PDEs) are a popular mathematical modelling tool, with applications ranging from finance to computational chemistry. However, standard numerical techniques for solving these PDEs are typically affected by the curse of dimensionality. In this work, we tackle this challenge while focusing on stationary diffusion equations defined over a high-dimensional domain with periodic boundary conditions. Inspired by recent progress in sparse function approximation in high dimensions, we propose a new method called compressive Fourier collocation. Combining ideas from compressive sensing and spectral collocation, our method replaces the use of structured collocation grids with Monte Carlo sampling and employs sparse recovery techniques, such as orthogonal matching pursuit and $\ell^1$ minimization, to approximate the Fourier coefficients of the PDE solution. We conduct a rigorous theoretical analysis showing that the approximation error of the proposed method is comparable with the best $s$-term approximation (with respect to the Fourier basis) to the solution. Using the recently introduced framework of random sampling in bounded Riesz systems, our analysis shows that the compressive Fourier collocation method mitigates the curse of dimensionality with respect to the number of collocation points under sufficient conditions on the regularity of the diffusion coefficient. We also present numerical experiments that illustrate the accuracy and stability of the method for the approximation of sparse and compressible solutions.
We consider a high-dimensional mean estimation problem over a binary hidden Markov model, which illuminates the interplay between memory in data, sample size, dimension, and signal strength in statistical inference. In this model, an estimator observes $n$ samples of a $d$-dimensional parameter vector $\theta_{*}\in\mathbb{R}^{d}$, multiplied by a random sign $ S_i $ ($1\le i\le n$), and corrupted by isotropic standard Gaussian noise. The sequence of signs $\{S_{i}\}_{i\in[n]}\in\{-1,1\}^{n}$ is drawn from a stationary homogeneous Markov chain with flip probability $\delta\in[0,1/2]$. As $\delta$ varies, this model smoothly interpolates two well-studied models: the Gaussian Location Model for which $\delta=0$ and the Gaussian Mixture Model for which $\delta=1/2$. Assuming that the estimator knows $\delta$, we establish a nearly minimax optimal (up to logarithmic factors) estimation error rate, as a function of $\|\theta_{*}\|,\delta,d,n$. We then provide an upper bound to the case of estimating $\delta$, assuming a (possibly inaccurate) knowledge of $\theta_{*}$. The bound is proved to be tight when $\theta_{*}$ is an accurately known constant. These results are then combined to an algorithm which estimates $\theta_{*}$ with $\delta$ unknown a priori, and theoretical guarantees on its error are stated.
We propose a new model-free feature screening method based on energy distances for ultrahigh-dimensional binary classification problems. Unlike existing methods, the cut-off involved in our procedure is data adaptive. With a high probability, the proposed method retains only relevant features after discarding all the noise variables. The proposed screening method is also extended to identify pairs of variables that are marginally undetectable, but have differences in their joint distributions. Finally, we build a classifier which maintains coherence between the proposed feature selection criteria and discrimination method, and also establish its risk consistency. An extensive numerical study with simulated data sets and real benchmark data sets show clear and convincing advantages of our classifier over the state-of-the-art methods.
This paper investigates the problem of regret minimization in linear time-varying (LTV) dynamical systems. Due to the simultaneous presence of uncertainty and non-stationarity, designing online control algorithms for unknown LTV systems remains a challenging task. At a cost of NP-hard offline planning, prior works have introduced online convex optimization algorithms, although they suffer from nonparametric rate of regret. In this paper, we propose the first computationally tractable online algorithm with regret guarantees that avoids offline planning over the state linear feedback policies. Our algorithm is based on the optimism in the face of uncertainty (OFU) principle in which we optimistically select the best model in a high confidence region. Our algorithm is then more explorative when compared to previous approaches. To overcome non-stationarity, we propose either a restarting strategy (R-OFU) or a sliding window (SW-OFU) strategy. With proper configuration, our algorithm is attains sublinear regret $O(T^{2/3})$. These algorithms utilize data from the current phase for tracking variations on the system dynamics. We corroborate our theoretical findings with numerical experiments, which highlight the effectiveness of our methods. To the best of our knowledge, our study establishes the first model-based online algorithm with regret guarantees under LTV dynamical systems.
In deep learning, fine-grained N:M sparsity reduces the data footprint and bandwidth of a General Matrix multiply (GEMM) by x2, and doubles throughput by skipping computation of zero values. So far, it was only used to prune weights. We examine how this method can be used also for activations and their gradients (i.e., "neural gradients"). To this end, we first establish a tensor-level optimality criteria. Previous works aimed to minimize the mean-square-error (MSE) of each pruned block. We show that while minimization of the MSE works fine for pruning the activations, it catastrophically fails for the neural gradients. Instead, we show that optimal pruning of the neural gradients requires an unbiased minimum-variance pruning mask. We design such specialized masks, and find that in most cases, 1:2 sparsity is sufficient for training, and 2:4 sparsity is usually enough when this is not the case. Further, we suggest combining several such methods together in order to potentially speed up training even more. A reference implementation is supplied in //github.com/brianchmiel/Act-and-Grad-structured-sparsity.
Analyzing time series in the frequency domain enables the development of powerful tools for investigating the second-order characteristics of multivariate stochastic processes. Parameters like the spectral density matrix and its inverse, the coherence or the partial coherence, encode comprehensively the complex linear relations between the component processes of the multivariate system. In this paper, we develop inference procedures for such parameters in a high-dimensional, time series setup. In particular, we first focus on the derivation of consistent estimators of the coherence and, more importantly, of the partial coherence which possess manageable limiting distributions that are suitable for testing purposes. Statistical tests of the hypothesis that the maximum over frequencies of the coherence, respectively, of the partial coherence, do not exceed a prespecified threshold value are developed. Our approach allows for testing hypotheses for individual coherences and/or partial coherences as well as for multiple testing of large sets of such parameters. In the latter case, a consistent procedure to control the false discovery rate is developed. The finite sample performance of the inference procedures proposed is investigated by means of simulations and applications to the construction of graphical interaction models for brain connectivity based on EEG data are presented.
In this paper, a new weighted average estimator (WAVE) is proposed to enhance the performance of the simple-averaging based distributed estimator, under a general loss with a high dimensional parameter. To obtain an efficient estimator, a weighted least-square ensemble framework plus an adaptive $L_1$ penalty is proposed, in which the local estimator is estimated via the adaptive-lasso and the weight is inversely proportional to the variance of local estimators. It can be proved that WAVE enjoys the same asymptotic properties as the global estimator and simultaneously spend a very low communication cost, only requiring the local worker to deliver two vectors to the master. Moreover, it is shown that WAVE is effective even when the samples across local workers have different mean and covariance. In particular, the asymptotic normality is established under such conditions, while other competitors may not own this property. The effectiveness of WAVE is further illustrated by an extensive numerical study and a real data analysis.
Sampling from an unnormalized target distribution is an essential problem with many applications in probabilistic inference. Stein Variational Gradient Descent (SVGD) has been shown to be a powerful method that iteratively updates a set of particles to approximate the distribution of interest. Furthermore, when analysing its asymptotic properties, SVGD reduces exactly to a single-objective optimization problem and can be viewed as a probabilistic version of this single-objective optimization problem. A natural question then arises: "Can we derive a probabilistic version of the multi-objective optimization?". To answer this question, we propose Stochastic Multiple Target Sampling Gradient Descent (MT-SGD), enabling us to sample from multiple unnormalized target distributions. Specifically, our MT-SGD conducts a flow of intermediate distributions gradually orienting to multiple target distributions, which allows the sampled particles to move to the joint high-likelihood region of the target distributions. Interestingly, the asymptotic analysis shows that our approach reduces exactly to the multiple-gradient descent algorithm for multi-objective optimization, as expected. Finally, we conduct comprehensive experiments to demonstrate the merit of our approach to multi-task learning.