亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coded caching (CC) schemes exploit the cumulative cache memory of network users, outperforming traditional uncoded schemes where cache contents are only used locally. Interestingly, this CC gain can also be combined with the spatial multiplexing gain of multi-antenna transmissions. In this paper, we extend the existing results of CC-aided data delivery in multi-access point (AP) wireless local area networks (WLAN) and video streaming applications by assuming multi-antenna transmitters at AP nodes. We present two distinct methods for using the extra resource that multi-antenna transmitters provide. While the first method tries to reduce the number of interference links in the network graph, the second one aims to remove inter-stream interference so that users with similar cache contents can be served simultaneously. While both methods provide increased throughput, they differ significantly in the underlying concept. Numerical simulations are used to compare the performance of different methods.

相關內容

Neural networks are vulnerable to adversarial attacks, i.e., small input perturbations can result in substantially different outputs of a neural network. Safety-critical environments require neural networks that are robust against input perturbations. However, training and formally verifying robust neural networks is challenging. We address this challenge by employing, for the first time, a end-to-end set-based training procedure that trains robust neural networks for formal verification. Our training procedure drastically simplifies the subsequent formal robustness verification of the trained neural network. While previous research has predominantly focused on augmenting neural network training with adversarial attacks, our approach leverages set-based computing to train neural networks with entire sets of perturbed inputs. Moreover, we demonstrate that our set-based training procedure effectively trains robust neural networks, which are easier to verify. In many cases, set-based trained neural networks outperform neural networks trained with state-of-the-art adversarial attacks.

We introduce networked communication to the mean-field game framework, in particular to oracle-free settings where $N$ decentralised agents learn along a single, non-episodic evolution path of the empirical system. We prove that our architecture, with only a few reasonable assumptions about network structure, has sample guarantees bounded between those of the centralised- and independent-learning cases. We discuss how the sample guarantees of the three theoretical algorithms do not actually result in practical convergence. Accordingly, we show that in practical settings where the theoretical parameters are not observed (leading to poor estimation of the Q-function), our communication scheme significantly accelerates convergence over the independent case, without relying on the undesirable assumption of a centralised controller. We contribute several further practical enhancements to all three theoretical algorithms, allowing us to showcase their first empirical demonstrations. Our experiments confirm that we can remove several of the key theoretical assumptions of the algorithms, and display the empirical convergence benefits brought by our new networked communication. We additionally show that the networked approach has significant advantages, over both the centralised and independent alternatives, in terms of robustness to unexpected learning failures and to changes in population size.

Unsupervised Domain Adaptation for Regression (UDAR) aims to adapt a model from a labeled source domain to an unlabeled target domain for regression tasks. Recent successful works in UDAR mostly focus on subspace alignment, involving the alignment of a selected subspace within the entire feature space. This contrasts with the feature alignment methods used for classification, which aim at aligning the entire feature space and have proven effective but are less so in regression settings. Specifically, while classification aims to identify separate clusters across the entire embedding dimension, regression induces less structure in the data representation, necessitating additional guidance for efficient alignment. In this paper, we propose an effective method for UDAR by incorporating guidance from uncertainty. Our approach serves a dual purpose: providing a measure of confidence in predictions and acting as a regularization of the embedding space. Specifically, we leverage the Deep Evidential Learning framework, which outputs both predictions and uncertainties for each input sample. We propose aligning the parameters of higher-order evidential distributions between the source and target domains using traditional alignment methods at the feature or posterior level. Additionally, we propose to augment the feature space representation by mixing source samples with pseudo-labeled target samples based on label similarity. This cross-domain mixing strategy produces more realistic samples than random mixing and introduces higher uncertainty, facilitating further alignment. We demonstrate the effectiveness of our approach on four benchmarks for UDAR, on which we outperform existing methods.

The family of log-concave density functions contains various kinds of common probability distributions. Due to the shape restriction, it is possible to find the nonparametric estimate of the density, for example, the nonparametric maximum likelihood estimate (NPMLE). However, the associated uncertainty quantification of the NPMLE is less well developed. The current techniques for uncertainty quantification are Bayesian, using a Dirichlet process prior combined with the use of Markov chain Monte Carlo (MCMC) to sample from the posterior. In this paper, we start with the NPMLE and use a version of the martingale posterior distribution to establish uncertainty about the NPMLE. The algorithm can be implemented in parallel and hence is fast. We prove the convergence of the algorithm by constructing suitable submartingales. We also illustrate results with different models and settings and some real data, and compare our method with that within the literature.

Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation. Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items. This combination of multiple components suffers from a cumbersome training process, and leads to semantic misalignment issues between dialogue generation and item recommendation. In this paper, we represent items in natural language and formulate CRS as a natural language processing task. Accordingly, we leverage the power of pre-trained language models to encode items, understand user intent via conversation, perform item recommendation through semantic matching, and generate dialogues. As a unified model, our PECRS (Parameter-Efficient CRS), can be optimized in a single stage, without relying on non-textual metadata such as a knowledge graph. Experiments on two benchmark CRS datasets, ReDial and INSPIRED, demonstrate the effectiveness of PECRS on recommendation and conversation. Our code is available at: //github.com/Ravoxsg/efficient_unified_crs.

Linear solvers are major computational bottlenecks in a wide range of decision support and optimization computations. The challenges become even more pronounced on heterogeneous hardware, where traditional sparse numerical linear algebra methods are often inefficient. For example, methods for solving ill-conditioned linear systems have relied on conditional branching, which degrades performance on hardware accelerators such as graphical processing units (GPUs). To improve the efficiency of solving ill-conditioned systems, our computational strategy separates computations that are efficient on GPUs from those that need to run on traditional central processing units (CPUs). Our strategy maximizes the reuse of expensive CPU computations. Iterative methods, which thus far have not been broadly used for ill-conditioned linear systems, play an important role in our approach. In particular, we extend ideas from [1] to implement iterative refinement using inexact LU factors and flexible generalized minimal residual (FGMRES), with the aim of efficient performance on GPUs. We focus on solutions that are effective within broader application contexts, and discuss how early performance tests could be improved to be more predictive of the performance in a realistic environment

In current text-based task-oriented dialogue (TOD) systems, user emotion detection (ED) is often overlooked or is typically treated as a separate and independent task, requiring additional training. In contrast, our work demonstrates that seamlessly unifying ED and TOD modeling brings about mutual benefits, and is therefore an alternative to be considered. Our method consists in augmenting SimpleToD, an end-to-end TOD system, by extending belief state tracking to include ED, relying on a single language model. We evaluate our approach using GPT-2 and Llama-2 on the EmoWOZ benchmark, a version of MultiWOZ annotated with emotions. Our results reveal a general increase in performance for ED and task results. Our findings also indicate that user emotions provide useful contextual conditioning for system responses, and can be leveraged to further refine responses in terms of empathy.

Blockchains deploy Transaction Fee Mechanisms (TFMs) to determine which user transactions to include in blocks and determine their payments (i.e., transaction fees). Increasing demand and scarce block resources have led to high user transaction fees. As these blockchains are a public resource, it may be preferable to reduce these transaction fees. To this end, we introduce Transaction Fee Redistribution Mechanisms (TFRMs) -- redistributing VCG payments collected from such TFM as rebates to minimize transaction fees. Classic redistribution mechanisms (RMs) achieve this while ensuring Allocative Efficiency (AE) and User Incentive Compatibility (UIC). Our first result shows the non-triviality of applying RM in TFMs. More concretely, we prove that it is impossible to reduce transaction fees when (i) transactions that are not confirmed do not receive rebates and (ii) the miner can strategically manipulate the mechanism. Driven by this, we propose \emph{Robust} TFRM (\textsf{R-TFRM}): a mechanism that compromises on an honest miner's individual rationality to guarantee strictly positive rebates to the users. We then introduce \emph{robust} and \emph{rational} TFRM (\textsf{R}$^2$\textsf{-TFRM}) that uses trusted on-chain randomness that additionally guarantees miner's individual rationality (in expectation) and strictly positive rebates. Our results show that TFRMs provide a promising new direction for reducing transaction fees in public blockchains.

Music streaming services heavily rely on recommender systems to improve their users' experience, by helping them navigate through a large musical catalog and discover new songs, albums or artists. However, recommending relevant and personalized content to new users, with few to no interactions with the catalog, is challenging. This is commonly referred to as the user cold start problem. In this applied paper, we present the system recently deployed on the music streaming service Deezer to address this problem. The solution leverages a semi-personalized recommendation strategy, based on a deep neural network architecture and on a clustering of users from heterogeneous sources of information. We extensively show the practical impact of this system and its effectiveness at predicting the future musical preferences of cold start users on Deezer, through both offline and online large-scale experiments. Besides, we publicly release our code as well as anonymized usage data from our experiments. We hope that this release of industrial resources will benefit future research on user cold start recommendation.

Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).

北京阿比特科技有限公司