亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This works explores the correlation between channels in reconfigurable intelligent surface (RIS)-aided communication systems. In this type of system, an RIS made up of many passive elements with adjustable phases reflects the transmitter's signal to the receiver. Since the transmitter-RIS link may be shared by multiple receivers, the cascade channels of two receivers may experience correlated fading, which can negatively impact system performance. Using the mean correlation coefficient as a metric, we analyze the correlation between two cascade channels and derive an accurate approximation in closed form. We also consider the extreme case of an infinitely large number of RIS elements and obtain a convergence result. Our analysis accuracy is validated by simulation results, which offer insights into the correlation characteristics of RIS-aided fading channels.

相關內容

New technologies for sensing and communication act as enablers for cooperative driving applications. Sensors are able to detect objects in the surrounding environment and information such as their current location is exchanged among vehicles. In order to cope with the vehicles' mobility, such information is required to be as fresh as possible for proper operation of cooperative driving applications. The age of information (AoI) has been proposed as a metric for evaluating freshness of information; recently also within the context of intelligent transportation systems (ITS). We investigate mechanisms to reduce the AoI of data transported in form of beacon messages while controlling their emission rate. We aim to balance packet collision probability and beacon frequency using the average peak age of information (PAoI) as a metric. This metric, however, only accounts for the generation time of the data but not for application-specific aspects, such as the location of the transmitting vehicle. We thus propose a new way of interpreting the AoI by considering information context, thereby incorporating vehicles' locations. As an example, we characterize such importance using the orientation and the distance of the involved vehicles. In particular, we introduce a weighting coefficient used in combination with the PAoI to evaluate the information freshness, thus emphasizing on information from more important neighbors. We further design the beaconing approach in a way to meet a given AoI requirement, thus, saving resources on the wireless channel while keeping the AoI minimal. We illustrate the effectiveness of our approach in Manhattan-like urban scenarios, reaching pre-specified targets for the AoI of beacon messages.

We consider the problem of answering connectivity queries on a real algebraic curve. The curve is given as the real trace of an algebraic curve, assumed to be in generic position, and being defined by some rational parametrizations. The query points are given by a zero-dimensional parametrization. We design an algorithm which counts the number of connected components of the real curve under study, and decides which query point lie in which connected component, in time log-linear in $N^6$, where $N$ is the maximum of the degrees and coefficient bit-sizes of the polynomials given as input. This matches the currently best-known bound for computing the topology of real plane curves. The main novelty of this algorithm is the avoidance of the computation of the complete topology of the curve.

Can robots mold soft plastic materials by shaping depth images? The short answer is no: current day robots can't. In this article, we address the problem of shaping plastic material with an anthropomorphic arm/hand robot, which observes the material with a fixed depth camera. Robots capable of molding could assist humans in many tasks, such as cooking, scooping or gardening. Yet, the problem is complex, due to its high-dimensionality at both perception and control levels. To address it, we design three alternative data-based methods for predicting the effect of robot actions on the material. Then, the robot can plan the sequence of actions and their positions, to mold the material into a desired shape. To make the prediction problem tractable, we rely on two original ideas. First, we prove that under reasonable assumptions, the shaping problem can be mapped from point cloud to depth image space, with many benefits (simpler processing, no need for registration, lower computation time and memory requirements). Second, we design a novel, simple metric for quickly measuring the distance between two depth images. The metric is based on the inherent point cloud representation of depth images, which enables direct and consistent comparison of image pairs through a non-uniform scaling approach, and therefore opens promising perspectives for designing \textit{depth image -- based} robot controllers. We assess our approach in a series of unprecedented experiments, where a robotic arm/hand molds flour from initial to final shapes, either with its own dataset, or by transfer learning from a human dataset. We conclude the article by discussing the limitations of our framework and those of current day hardware, which make human-like robot molding a challenging open research problem.

Semantic communication, which focuses on conveying the meaning of information rather than exact bit reconstruction, has gained considerable attention in recent years. Meanwhile, reconfigurable intelligent surface (RIS) is a promising technology that can achieve high spectral and energy efficiency by dynamically reflecting incident signals through programmable passive components. In this paper, we put forth a semantic communication scheme aided by RIS. Using text transmission as an example, experimental results demonstrate that the RIS-assisted semantic communication system outperforms the point-to-point semantic communication system in terms of BLEU scores in Rayleigh fading channels, especially at low signal-to-noise ratio (SNR) regimes. In addition, the RIS-assisted semantic communication system exhibits superior robustness against channel estimation errors compared to its point-to-point counterpart. RIS can improve performance as it provides extra line-of-sight (LoS) paths and enhances signal propagation conditions compared to point-to-point systems.

Human behavior is conditioned by codes and norms that constrain action. Rules, ``manners,'' laws, and moral imperatives are examples of classes of constraints that govern human behavior. These systems of constraints are "messy:" individual constraints are often poorly defined, what constraints are relevant in a particular situation may be unknown or ambiguous, constraints interact and conflict with one another, and determining how to act within the bounds of the relevant constraints may be a significant challenge, especially when rapid decisions are needed. Despite such messiness, humans incorporate constraints in their decisions robustly and rapidly. General, artificially-intelligent agents must also be able to navigate the messiness of systems of real-world constraints in order to behave predictability and reliably. In this paper, we characterize sources of complexity in constraint processing for general agents and describe a computational-level analysis for such constraint compliance. We identify key algorithmic requirements based on the computational-level analysis and outline an initial, exploratory implementation of a general approach to constraint compliance.

Full duplex (FD) systems suffer from very high hardware cost and high power consumption to mitigate the self-interference (SI) in the analog domain. Moreover, in millimeter wave (mmWave) they rely on hybrid beamforming (HYBF) as a signal processing tool to partially deal with the SI, which presents many drawbacks such as high insertion loss and high power consumption. This article proposes the use of near-field (NF-) IRSs for FD systems with the objective to solve the aforementioned issues cost-efficiently. Namely, we propose to truncate the analog/hybrid beamforming stage of the mmWave FD systems and compensate it with an NF-IRS, to simultaneously and smartly control the uplink (UL) and downlink (DL) channels, while assisting in shaping the SI channel: this to obtain very strong passive SI cancellation. A novel joint active and passive beamforming design for the weighted sum-rate (WSR) maximization of a NF-IRS-assisted mmWave point-to-point FD system is presented. Results show that the proposed solution fully reaps the benefits of the IRSs only when they operate in the NF, which leads to considerably higher gains compared to the conventional massive MIMO (mMIMO) mmWave FD and half duplex (HD) systems.

Reconfigurable intelligent surfaces (RISs) allow controlling the propagation environment in wireless networks by tuning multiple reflecting elements. RISs have been traditionally realized through single connected architectures, mathematically characterized by a diagonal scattering matrix. Recently, beyond diagonal RISs (BD-RISs) have been proposed as a novel branch of RISs whose scattering matrix is not limited to be diagonal, which creates new benefits and opportunities for RISs. Efficient BD-RIS architectures have been realized based on group and fully connected reconfigurable impedance networks. However, a closed-form solution for the global optimal scattering matrix of these architectures is not yet available. In this paper, we provide such a closed-form solution proving that the theoretical performance upper bounds can be exactly achieved for any channel realization. We first consider the received signal power maximization in single-user single-input single-output (SISO) systems aided by a BD-RIS working in reflective or transmissive mode. Then, we extend our solution to single-user multiple-input multiple-output (MIMO) and multi-user multiple-input single-output (MISO) systems. We show that our algorithm is less complex than the iterative optimization algorithms employed in the previous literature. The complexity of our algorithm grows linearly (resp. cubically) with the number of RIS elements in the case of group (resp. fully) connected architectures.

Reconfigurable intelligent surfaces (RIS) are capable of beneficially ameliorating the propagation environment by appropriately controlling the passive reflecting elements. To extend the coverage area, the concept of simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) has been proposed, yielding supporting 360^circ coverage user equipment (UE) located on both sides of the RIS. In this paper, we theoretically formulate the ergodic sum-rate of the STAR-RIS assisted non-orthogonal multiple access (NOMA) uplink in the face of channel estimation errors and hardware impairments (HWI). Specifically, the STAR-RIS phase shift is configured based on the statistical channel state information (CSI), followed by linear minimum mean square error (LMMSE) channel estimation of the equivalent channel spanning from the UEs to the access point (AP). Afterwards, successive interference cancellation (SIC) is employed at the AP using the estimated instantaneous CSI, and we derive the theoretical ergodic sum-rate upper bound for both perfect and imperfect SIC decoding algorithm. The theoretical analysis and the simulation results show that both the channel estimation and the ergodic sum-rate have performance floor at high transmit power region caused by transceiver hardware impairments.

Cell-free (CF) massive multiple-input multiple-output (MIMO) and reconfigurable intelligent surface (RIS) are two promising technologies for realizing future beyond-fifth generation (B5G) networks. In this paper, we consider a practical spatially correlated RIS-aided CF massive MIMO system with multi-antenna access points (APs) over spatially correlated fading channels. Different from previous work, the electromagnetic interference (EMI) at RIS is considered to further characterize the system performance of the actual environment. Then, we derive the closed-form expression for the system spectral efficiency (SE) with the maximum ratio (MR) combining at the APs and the large-scale fading decoding (LSFD) at the central processing unit (CPU). Moreover, to counteract the near-far effect and EMI, we propose practical fractional power control (FPC) and max-min power control algorithms to further improve the system performance. We unveil the impact of EMI, channel correlations, and different signal processing methods on the uplink SE of user equipments (UEs). The accuracy of our derived analytical results is verified by extensive Monte-Carlo simulations. Our results show that the EMI can substantially degrade the SE, especially for those UEs with unsatisfactory channel conditions. Besides, increasing the number of RIS elements is always beneficial in terms of the SE, but with diminishing returns when the number of RIS elements is sufficiently large. Furthermore, the existence of spatial correlations among RIS elements can deteriorate the system performance when RIS is impaired by EMI.

Despite the recent proliferation of spatial audio technologies, the evaluation of spatial quality continues to rely on subjective listening tests, often requiring expert listeners. Based on the duplex theory of spatial hearing, it is possible to construct a signal model for frequency-independent spatial distortion by accounting for inter-channel time and level differences relative to a reference signal. By using a combination of least-square optimization and heuristics, we propose a signal decomposition method to isolate the spatial error from a processed signal. This allows the computation of simple energy-ratio metrics, providing objective measures of spatial and non-spatial signal qualities, with minimal assumption and no dataset dependency. Experiments demonstrate robustness of the method against common signal degradation as introduced by, e.g., audio compression and music source separation. Implementation is available at //github.com/karnwatcharasupat/spauq.

北京阿比特科技有限公司