亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

News media is expected to uphold unbiased reporting. Yet they may still affect public opinion by selectively including or omitting events that support or contradict their ideological positions. Prior work in NLP has only studied media bias via linguistic style and word usage. In this paper, we study to which degree media balances news reporting and affects consumers through event inclusion or omission. We first introduce the task of detecting both partisan and counter-partisan events: events that support or oppose the author's political ideology. To conduct our study, we annotate a high-quality dataset, PAC, containing 8,511 (counter-)partisan event annotations in 304 news articles from ideologically diverse media outlets. We benchmark PAC to highlight the challenges of this task. Our findings highlight both the ways in which the news subtly shapes opinion and the need for large language models that better understand events within a broader context. Our dataset can be found at //github.com/launchnlp/Partisan-Event-Dataset.

相關內容

PAC學習理論不關心假設選擇算法,他關心的是能否從假設空間H中學習一個好的假設h。此理論不關心怎樣在假設空間中尋找好的假設,只關心能不能找得到。現在我們在來看一下什么叫“好假設”?只要滿足兩個條件(PAC辨識條件)即可

Modeling and formally reasoning about distributed systems with faults is a challenging task. To address this problem, we propose the theory of Validating Labeled State transition and Message production systems (VLSMs). The theory of VLSMs provides a general approach to describing and verifying properties of distributed protocols whose executions are subject to faults, supporting a correct-by-construction system development methodology. The central focus of our investigation is equivocation, a mode of faulty behavior that we formally model, reason about, and then show how to detect from durable evidence that may be available locally to system components. Equivocating components exhibit behavior that is inconsistent with single-trace system executions, while also only interacting with other components by sending and receiving valid messages. Components of system are called validators for that system if their validity constraints validate that the messages they receive are producible by the system. Our main result shows that for systems of validators, the effect that Byzantine components can have on honest validators is precisely identical to the effect that equivocating components can have on non-equivocating validators. Therefore, for distributed systems of potentially faulty validators, replacing Byzantine components with equivocating components has no material analytical consequences, and forms the basis of a sound alternative foundation to Byzantine fault tolerance analysis. All of the results and examples in the paper have been formalised and checked in the Coq proof assistant.

Although there are currently many benchmarks available for evaluating the long context understanding and reasoning capability of large language models, with the expansion of the context window in these models, the existing long context benchmarks are no longer sufficient for evaluating the long context understanding and reasoning capability of large language models. In this paper, we have developed a fresh long context evaluation benchmark, which we name it Marathon in the form of multiple choice questions, inspired by benchmarks such as MMLU, for assessing the long context comprehension capability of large language models quickly, accurately, and objectively. We have evaluated several of the latest and most popular large language models, as well as three recent and effective long context optimization methods, on our benchmark. This showcases the long context reasoning and comprehension capabilities of these large language models and validates the effectiveness of these optimization methods. Marathon is available at //huggingface.co/datasets/Lemoncoke/Marathon.

Anomalous sound detection (ASD) systems are usually compared by using threshold-independent performance measures such as AUC-ROC. However, for practical applications a decision threshold is needed to decide whether a given test sample is normal or anomalous. Estimating such a threshold is highly non-trivial in a semi-supervised setting where only normal training samples are available. In this work, F1-EV a novel threshold-independent performance measure for ASD systems that also includes the likelihood of estimating a good decision threshold is proposed and motivated using specific toy examples. In experimental evaluations, multiple performance measures are evaluated for all systems submitted to the ASD task of the DCASE Challenge 2023. It is shown that F1-EV is strongly correlated with AUC-ROC while having a significantly stronger correlation with the F1-score obtained with estimated and optimal decision thresholds than AUC-ROC.

3D simulated environments play a critical role in Embodied AI, but their creation requires expertise and extensive manual effort, restricting their diversity and scope. To mitigate this limitation, we present Holodeck, a system that generates 3D environments to match a user-supplied prompt fully automatedly. Holodeck can generate diverse scenes, e.g., arcades, spas, and museums, adjust the designs for styles, and can capture the semantics of complex queries such as "apartment for a researcher with a cat" and "office of a professor who is a fan of Star Wars". Holodeck leverages a large language model (GPT-4) for common sense knowledge about what the scene might look like and uses a large collection of 3D assets from Objaverse to populate the scene with diverse objects. To address the challenge of positioning objects correctly, we prompt GPT-4 to generate spatial relational constraints between objects and then optimize the layout to satisfy those constraints. Our large-scale human evaluation shows that annotators prefer Holodeck over manually designed procedural baselines in residential scenes and that Holodeck can produce high-quality outputs for diverse scene types. We also demonstrate an exciting application of Holodeck in Embodied AI, training agents to navigate in novel scenes like music rooms and daycares without human-constructed data, which is a significant step forward in developing general-purpose embodied agents.

Discrimination can occur when the underlying unbiased labels are overwritten by an agent with potential bias, resulting in biased datasets that unfairly harm specific groups and cause classifiers to inherit these biases. In this paper, we demonstrate that despite only having access to the biased labels, it is possible to eliminate bias by filtering the fairest instances within the framework of confident learning. In the context of confident learning, low self-confidence usually indicates potential label errors; however, this is not always the case. Instances, particularly those from underrepresented groups, might exhibit low confidence scores for reasons other than labeling errors. To address this limitation, our approach employs truncation of the confidence score and extends the confidence interval of the probabilistic threshold. Additionally, we incorporate with co-teaching paradigm for providing a more robust and reliable selection of fair instances and effectively mitigating the adverse effects of biased labels. Through extensive experimentation and evaluation of various datasets, we demonstrate the efficacy of our approach in promoting fairness and reducing the impact of label bias in machine learning models.

Large Language Models (LLMs) have revolutionized various industries by harnessing their power to improve productivity and facilitate learning across different fields. One intriguing application involves combining LLMs with visual models to create a novel approach to Human-Computer Interaction. The core idea of this system is to create a user-friendly platform that enables people to utilize ChatGPT's features in their everyday lives. uTalk is comprised of technologies like Whisper, ChatGPT, Microsoft Speech Services, and the state-of-the-art (SOTA) talking head system SadTalker. Users can engage in human-like conversation with a digital twin and receive answers to any questions. Also, uTalk could generate content by submitting an image and input (text or audio). This system is hosted on Streamlit, where users will be prompted to provide an image to serve as their AI assistant. Then, as the input (text or audio) is provided, a set of operations will produce a video of the avatar with the precise response. This paper outlines how SadTalker's run-time has been optimized by 27.69% based on 25 frames per second (FPS) generated videos and 38.38% compared to our 20FPS generated videos. Furthermore, the integration and parallelization of SadTalker and Streamlit have resulted in a 9.8% improvement compared to the initial performance of the system.

Large Language Models (LLMs) have gained considerable traction within the Software Engineering (SE) community, impacting various SE tasks from code completion to test generation, from program repair to code summarization. Despite their promise, researchers must still be careful as numerous intricate factors can influence the outcomes of experiments involving LLMs. This paper initiates an open discussion on potential threats to the validity of LLM-based research including issues such as closed-source models, possible data leakage between LLM training data and research evaluation, and the reproducibility of LLM-based findings. In response, this paper proposes a set of guidelines tailored for SE researchers and Language Model (LM) providers to mitigate these concerns. The implications of the guidelines are illustrated using existing good practices followed by LLM providers and a practical example for SE researchers in the context of test case generation.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司