Recently, text-to-image models have been thriving. Despite their powerful generative capacity, our research has uncovered a lack of robustness in this generation process. Specifically, the introduction of small perturbations to the text prompts can result in the blending of primary subjects with other categories or their complete disappearance in the generated images. In this paper, we propose Auto-attack on Text-to-image Models (ATM), a gradient-based approach, to effectively and efficiently generate such perturbations. By learning a Gumbel Softmax distribution, we can make the discrete process of word replacement or extension continuous, thus ensuring the differentiability of the perturbation generation. Once the distribution is learned, ATM can sample multiple attack samples simultaneously. These attack samples can prevent the generative model from generating the desired subjects without compromising image quality. ATM has achieved a 91.1% success rate in short-text attacks and an 81.2% success rate in long-text attacks. Further empirical analysis revealed four attack patterns based on: 1) the variability in generation speed, 2) the similarity of coarse-grained characteristics, 3) the polysemy of words, and 4) the positioning of words.
In May 2022, an apparent speculative attack, followed by market panic, led to the precipitous downfall of UST, one of the most popular stablecoins at that time. However, UST is not the only stablecoin to have been depegged in the past. Designing resilient and long-term stable coins, therefore, appears to present a hard challenge. To further scrutinize existing stablecoin designs and ultimately lead to more robust systems, we need to understand where volatility emerges. Our work provides a game-theoretical model aiming to help identify why stablecoins suffer from a depeg. This game-theoretical model reveals that stablecoins have different price equilibria depending on the coin's architecture and mechanism to minimize volatility. Moreover, our theory is supported by extensive empirical data, spanning $1$ year. To that end, we collect daily prices for 22 stablecoins and on-chain data from five blockchains including the Ethereum and the Terra blockchain.
The diffusion maps embedding of data lying on a manifold have shown success in tasks ranging from dimensionality reduction and clustering, to data visualization. In this work, we consider embedding data sets which were sampled from a manifold which is closed under the action of a continuous matrix group. An example of such a data set is images who's planar rotations are arbitrary. The G-invariant graph Laplacian, introduced in a previous work of the authors, admits eigenfunctions in the form of tensor products between the elements of the irreducible unitary representations of the group and eigenvectors of certain matrices. We employ these eigenfunctions to derive diffusion maps that intrinsically account for the group action on the data. In particular, we construct both equivariant and invariant embeddings which can be used naturally to cluster and align the data points. We demonstrate the effectiveness of our construction with simulated data.
Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed due to the requirements of hundreds or even thousands of sampling steps. Existing acceleration sampling techniques inevitably sacrifice performance to some extent, leading to over-blurry SR results. To address this issue, we propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps, thereby eliminating the need for post-acceleration during inference and its associated performance deterioration. Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual between them, substantially improving the transition efficiency. Additionally, an elaborate noise schedule is developed to flexibly control the shifting speed and the noise strength during the diffusion process. Extensive experiments demonstrate that the proposed method obtains superior or at least comparable performance to current state-of-the-art methods on both synthetic and real-world datasets, even only with 15 sampling steps. Our code and model are available at //github.com/zsyOAOA/ResShift.
As large language models (LLMs) perform more difficult tasks, it becomes harder to verify the correctness and safety of their behavior. One approach to help with this issue is to prompt LLMs to externalize their reasoning, e.g., by having them generate step-by-step reasoning as they answer a question (Chain-of-Thought; CoT). The reasoning may enable us to check the process that models use to perform tasks. However, this approach relies on the stated reasoning faithfully reflecting the model's actual reasoning, which is not always the case. To improve over the faithfulness of CoT reasoning, we have models generate reasoning by decomposing questions into subquestions. Decomposition-based methods achieve strong performance on question-answering tasks, sometimes approaching that of CoT while improving the faithfulness of the model's stated reasoning on several recently-proposed metrics. By forcing the model to answer simpler subquestions in separate contexts, we greatly increase the faithfulness of model-generated reasoning over CoT, while still achieving some of the performance gains of CoT. Our results show it is possible to improve the faithfulness of model-generated reasoning; continued improvements may lead to reasoning that enables us to verify the correctness and safety of LLM behavior.
Since the training data for the target model in a data-free black-box attack is not available, most recent schemes utilize GANs to generate data for training substitute model. However, these GANs-based schemes suffer from low training efficiency as the generator needs to be retrained for each target model during the substitute training process, as well as low generation quality. To overcome these limitations, we consider utilizing the diffusion model to generate data, and propose a data-free black-box attack scheme based on diffusion model to improve the efficiency and accuracy of substitute training. Despite the data generated by the diffusion model exhibits high quality, it presents diverse domain distributions and contains many samples that do not meet the discriminative criteria of the target model. To further facilitate the diffusion model to generate data suitable for the target model, we propose a Latent Code Augmentation (LCA) method to guide the diffusion model in generating data. With the guidance of LCA, the data generated by the diffusion model not only meets the discriminative criteria of the target model but also exhibits high diversity. By utilizing this data, it is possible to train substitute model that closely resemble the target model more efficiently. Extensive experiments demonstrate that our LCA achieves higher attack success rates and requires fewer query budgets compared to GANs-based schemes for different target models.
Deep learning models are complex due to their size, structure, and inherent randomness in training procedures. Additional complexity arises from the selection of datasets and inductive biases. Addressing these challenges for explainability, Kim et al. (2018) introduced Concept Activation Vectors (CAVs), which aim to understand deep models' internal states in terms of human-aligned concepts. These concepts correspond to directions in latent space, identified using linear discriminants. Although this method was first applied to image classification, it was later adapted to other domains, including natural language processing. In this work, we attempt to apply the method to electroencephalogram (EEG) data for explainability in Kostas et al.'s BENDR (2021), a large-scale transformer model. A crucial part of this endeavor involves defining the explanatory concepts and selecting relevant datasets to ground concepts in the latent space. Our focus is on two mechanisms for EEG concept formation: the use of externally labeled EEG datasets, and the application of anatomically defined concepts. The former approach is a straightforward generalization of methods used in image classification, while the latter is novel and specific to EEG. We present evidence that both approaches to concept formation yield valuable insights into the representations learned by deep EEG models.
Recent vision-language models outperform vision-only models on many image classification tasks. However, because of the absence of paired text/image descriptions, it remains difficult to fine-tune these models for fine-grained image classification. In this work, we propose a method, GIST, for generating image-specific fine-grained text descriptions from image-only datasets, and show that these text descriptions can be used to improve classification. Key parts of our method include 1. prompting a pretrained large language model with domain-specific prompts to generate diverse fine-grained text descriptions for each class and 2. using a pretrained vision-language model to match each image to label-preserving text descriptions that capture relevant visual features in the image. We demonstrate the utility of GIST by fine-tuning vision-language models on the image-and-generated-text pairs to learn an aligned vision-language representation space for improved classification. We evaluate our learned representation space in full-shot and few-shot scenarios across four diverse fine-grained classification datasets, each from a different domain. Our method achieves an average improvement of $4.1\%$ in accuracy over CLIP linear probes and an average of $1.1\%$ improvement in accuracy over the previous state-of-the-art image-text classification method on the full-shot datasets. Our method achieves similar improvements across few-shot regimes. Code is available at //github.com/emu1729/GIST.
Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.
Deep learning shows great potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly with respect to certain implied parameters. Recently, the diffusion Model becomes a raising class of generative models by virtue of its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its natural drawback of a slow generation process, leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We firstly state the main problem with two landmark works - DDPM and DSM. Then, we present a diverse range of advanced techniques to speed up the diffusion models - training schedule, training-free sampling, mixed-modeling, and score & diffusion unification. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations & further directions.
Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.