亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Localized point sources (monopoles) in an acoustical domain are implemented to a three dimensional non-singular Helmholtz boundary element method in the frequency domain. It allows for the straightforward use of higher order surface elements on the boundaries of the problem. It will been shown that the effect of the monopole sources ends up on the right hand side of the resulting matrix system. Some carefully selected examples are studied, such as point sources near and within a concentric spherical core-shell scatterer (with theoretical verification), near a curved focusing surface and near a multi-scale and multi-domain acoustic lens.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Amazon · Continuity · 統計量 · BASIC ·
2023 年 6 月 16 日

The most frequently used method to collect research data online is crowdsouring and its use continues to grow rapidly. This report investigates for the first time whether researchers also have to expect significantly different hardware performance when deploying to Amazon Mechanical Turk (MTurk). This is assessed by collecting basic hardware parameters (Operating System, GPU, and used browser) from Amazon Mechanical Turk (MTurk) and a traditional recruitment method (i.e., snowballing). The significant hardware differences between crowdsourcing participants (MTurk) and snowball recruiting are reported including relevant descriptive statistics for assessing hardware performance of 3D web applications. The report suggests that hardware differences need to be considered to obtain valid results if the designed experiment application requires graphical intense computations and relies on a coherent user experience of MTurk and more established recruitment strategies (i.e. snowballing).

Synthetic aperture sonar (SAS) measures a scene from multiple views in order to increase the resolution of reconstructed imagery. Image reconstruction methods for SAS coherently combine measurements to focus acoustic energy onto the scene. However, image formation is typically under-constrained due to a limited number of measurements and bandlimited hardware, which limits the capabilities of existing reconstruction methods. To help meet these challenges, we design an analysis-by-synthesis optimization that leverages recent advances in neural rendering to perform coherent SAS imaging. Our optimization enables us to incorporate physics-based constraints and scene priors into the image formation process. We validate our method on simulation and experimental results captured in both air and water. We demonstrate both quantitatively and qualitatively that our method typically produces superior reconstructions than existing approaches. We share code and data for reproducibility.

Learning the kernel parameters for Gaussian processes is often the computational bottleneck in applications such as online learning, Bayesian optimization, or active learning. Amortizing parameter inference over different datasets is a promising approach to dramatically speed up training time. However, existing methods restrict the amortized inference procedure to a fixed kernel structure. The amortization network must be redesigned manually and trained again in case a different kernel is employed, which leads to a large overhead in design time and training time. We propose amortizing kernel parameter inference over a complete kernel-structure-family rather than a fixed kernel structure. We do that via defining an amortization network over pairs of datasets and kernel structures. This enables fast kernel inference for each element in the kernel family without retraining the amortization network. As a by-product, our amortization network is able to do fast ensembling over kernel structures. In our experiments, we show drastically reduced inference time combined with competitive test performance for a large set of kernels and datasets.

Many materials processes and properties depend on the anisotropy of the energy of grain boundaries, i.e. on the fact that this energy is a function of the five geometric degrees of freedom (DOF) of the grain boundaries. To access this parameter space in an efficient way and discover energy cusps in unexplored regions, a method was recently established, which combines atomistic simulations with statistical methods 10.1002/adts.202100615. This sequential sampling technique is now extended in the spirit of an active learning algorithm by adding a criterion to decide when the sampling is advanced enough to stop. To this instance, two parameters to analyse the sampling results on the fly are introduced: the number of cusps, which correspond to the most interesting and important regions of the energy landscape, and the maximum change of energy between two sequential iterations. Monitoring these two quantities provides valuable insight into how the subspaces are energetically structured. The combination of both parameters provides the necessary information to evaluate the sampling of the 2D subspaces of grain boundary plane inclinations of even non-periodic, low angle grain boundaries. With a reasonable number of datapoints in the initial design, only a few sequential iterations already influence the accuracy of the sampling substantially and the new algorithm outperforms regular high-throughput sampling.

Krylov subspace methods are a ubiquitous tool for computing near-optimal rank $k$ approximations of large matrices. While "large block" Krylov methods with block size at least $k$ give the best known theoretical guarantees, block size one (a single vector) or a small constant is often preferred in practice. Despite their popularity, we lack theoretical bounds on the performance of such "small block" Krylov methods for low-rank approximation. We address this gap between theory and practice by proving that small block Krylov methods essentially match all known low-rank approximation guarantees for large block methods. Via a black-box reduction we show, for example, that the standard single vector Krylov method run for $t$ iterations obtains the same spectral norm and Frobenius norm error bounds as a Krylov method with block size $\ell \geq k$ run for $O(t/\ell)$ iterations, up to a logarithmic dependence on the smallest gap between sequential singular values. That is, for a given number of matrix-vector products, single vector methods are essentially as effective as any choice of large block size. By combining our result with tail-bounds on eigenvalue gaps in random matrices, we prove that the dependence on the smallest singular value gap can be eliminated if the input matrix is perturbed by a small random matrix. Further, we show that single vector methods match the more complex algorithm of [Bakshi et al. `22], which combines the results of multiple block sizes to achieve an improved algorithm for Schatten $p$-norm low-rank approximation.

In this paper we consider the weighted $k$-Hamming and $k$-Edit distances, that are natural generalizations of the classical Hamming and Edit distances. As main results of this paper we prove that for any $k\geq 2$ the DECIS-$k$-Hamming problem is $\mathbb{P}$-SPACE-complete and the DECIS-$k$-Edit problem is NEXPTIME-complete.

In structured prediction, target objects have rich internal structure which does not factorize into independent components and violates common i.i.d. assumptions. This challenge becomes apparent through the exponentially large output space in applications such as image segmentation or scene graph generation. We present a novel PAC-Bayesian risk bound for structured prediction wherein the rate of generalization scales not only with the number of structured examples but also with their size. The underlying assumption, conforming to ongoing research on generative models, is that data are generated by the Knothe-Rosenblatt rearrangement of a factorizing reference measure. This allows to explicitly distill the structure between random output variables into a Wasserstein dependency matrix. Our work makes a preliminary step towards leveraging powerful generative models to establish generalization bounds for discriminative downstream tasks in the challenging setting of structured prediction.

NeRF acquisition typically requires careful choice of near planes for the different cameras or suffers from background collapse, creating floating artifacts on the edges of the captured scene. The key insight of this work is that background collapse is caused by a higher density of samples in regions near cameras. As a result of this sampling imbalance, near-camera volumes receive significantly more gradients, leading to incorrect density buildup. We propose a gradient scaling approach to counter-balance this sampling imbalance, removing the need for near planes, while preventing background collapse. Our method can be implemented in a few lines, does not induce any significant overhead, and is compatible with most NeRF implementations.

Existing theoretical studies on offline reinforcement learning (RL) mostly consider a dataset sampled directly from the target task. In practice, however, data often come from several heterogeneous but related sources. Motivated by this gap, this work aims at rigorously understanding offline RL with multiple datasets that are collected from randomly perturbed versions of the target task instead of from itself. An information-theoretic lower bound is derived, which reveals a necessary requirement on the number of involved sources in addition to that on the number of data samples. Then, a novel HetPEVI algorithm is proposed, which simultaneously considers the sample uncertainties from a finite number of data samples per data source and the source uncertainties due to a finite number of available data sources. Theoretical analyses demonstrate that HetPEVI can solve the target task as long as the data sources collectively provide a good data coverage. Moreover, HetPEVI is demonstrated to be optimal up to a polynomial factor of the horizon length. Finally, the study is extended to offline Markov games and offline robust RL, which demonstrates the generality of the proposed designs and theoretical analyses.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

北京阿比特科技有限公司