We initiate the study of fair distribution of delivery tasks among a set of agents wherein delivery jobs are placed along the vertices of a graph. Our goal is to fairly distribute delivery costs (modeled as a submodular function) among a fixed set of agents while satisfying some desirable notions of economic efficiency. We adopt well-established fairness concepts$\unicode{x2014}$such as envy-freeness up to one item (EF1) and minimax share (MMS)$\unicode{x2014}$to our setting and show that fairness is often incompatible with the efficiency notion of social optimality. Yet, we characterize instances that admit fair and socially optimal solutions by exploiting graph structures. We further show that achieving fairness along with Pareto optimality is computationally intractable. Nonetheless, we design an XP algorithm (parameterized by the number of agents) for finding MMS and Pareto optimal solutions on every instance, and show that the same algorithm can be modified to find efficient solutions along with EF1, when such solutions exist. We complement our theoretical results by experimentally analyzing the price of fairness on randomly generated graph structures.
Quality Diversity (QD) has emerged as a powerful alternative optimization paradigm that aims at generating large and diverse collections of solutions, notably with its flagship algorithm MAP-ELITES (ME) which evolves solutions through mutations and crossovers. While very effective for some unstructured problems, early ME implementations relied exclusively on random search to evolve the population of solutions, rendering them notoriously sample-inefficient for high-dimensional problems, such as when evolving neural networks. Follow-up works considered exploiting gradient information to guide the search in order to address these shortcomings through techniques borrowed from either Black-Box Optimization (BBO) or Reinforcement Learning (RL). While mixing RL techniques with ME unlocked state-of-the-art performance for robotics control problems that require a good amount of exploration, it also plagued these ME variants with limitations common among RL algorithms that ME was free of, such as hyperparameter sensitivity, high stochasticity as well as training instability, including when the population size increases as some components are shared across the population in recent approaches. Furthermore, existing approaches mixing ME with RL tend to be tied to a specific RL algorithm, which effectively prevents their use on problems where the corresponding RL algorithm fails. To address these shortcomings, we introduce a flexible framework that allows the use of any RL algorithm and alleviates the aforementioned limitations by evolving populations of agents (whose definition include hyperparameters and all learnable parameters) instead of just policies. We demonstrate the benefits brought about by our framework through extensive numerical experiments on a number of robotics control problems, some of which with deceptive rewards, taken from the QD-RL literature.
This paper examines the distribution of order statistics taken from simple-random-sampling without replacement (SRSWOR) from a finite population with values 1,...,N. This distribution is a shifted version of the beta-binomial distribution, parameterised in a particular way. We derive the distribution and show how it relates to the distribution of order statistics under IID sampling from a uniform distribution over the unit interval. We examine properties of the distribution, including moments and asymptotic results. We also generalise the distribution to sampling without replacement of order statistics from an arbitrary finite population. We examine the properties of the order statistics for inference about an unknown population size (called the German tank problem) and we derive relevant estimation results based on observation of an arbitrary set of order statistics. We also introduce an algorithm that simulates sampling without replacement of order statistics from an arbitrary finite population without having to generate the entire sample.
We consider the problem of estimating a scalar target parameter in the presence of nuisance parameters. Replacing the unknown nuisance parameter with a nonparametric estimator, e.g.,a machine learning (ML) model, is convenient but has shown to be inefficient due to large biases. Modern methods, such as the targeted minimum loss-based estimation (TMLE) and double machine learning (DML), achieve optimal performance under flexible assumptions by harnessing ML estimates while mitigating the plug-in bias. To avoid a sub-optimal bias-variance trade-off, these methods perform a debiasing step of the plug-in pre-estimate. Existing debiasing methods require the influence function of the target parameter as input. However, deriving the IF requires specialized expertise and thus obstructs the adaptation of these methods by practitioners. We propose a novel way to debias plug-in estimators which (i) is efficient, (ii) does not require the IF to be implemented, (iii) is computationally tractable, and therefore can be readily adapted to new estimation problems and automated without analytic derivations by the user. We build on the TMLE framework and update a plug-in estimate with a regularized likelihood maximization step over a nonparametric model constructed with a reproducing kernel Hilbert space (RKHS), producing an efficient plug-in estimate for any regular target parameter. Our method, thus, offers the efficiency of competing debiasing techniques without sacrificing the utility of the plug-in approach.
Polynomial kernel regression is one of the standard and state-of-the-art learning strategies. However, as is well known, the choices of the degree of polynomial kernel and the regularization parameter are still open in the realm of model selection. The first aim of this paper is to develop a strategy to select these parameters. On one hand, based on the worst-case learning rate analysis, we show that the regularization term in polynomial kernel regression is not necessary. In other words, the regularization parameter can decrease arbitrarily fast when the degree of the polynomial kernel is suitable tuned. On the other hand,taking account of the implementation of the algorithm, the regularization term is required. Summarily, the effect of the regularization term in polynomial kernel regression is only to circumvent the " ill-condition" of the kernel matrix. Based on this, the second purpose of this paper is to propose a new model selection strategy, and then design an efficient learning algorithm. Both theoretical and experimental analysis show that the new strategy outperforms the previous one. Theoretically, we prove that the new learning strategy is almost optimal if the regression function is smooth. Experimentally, it is shown that the new strategy can significantly reduce the computational burden without loss of generalization capability.
Graph generative models become increasingly effective for data distribution approximation and data augmentation. While they have aroused public concerns about their malicious misuses or misinformation broadcasts, just as what Deepfake visual and auditory media has been delivering to society. Hence it is essential to regulate the prevalence of generated graphs. To tackle this problem, we pioneer the formulation of the generated graph detection problem to distinguish generated graphs from real ones. We propose the first framework to systematically investigate a set of sophisticated models and their performance in four classification scenarios. Each scenario switches between seen and unseen datasets/generators during testing to get closer to real-world settings and progressively challenge the classifiers. Extensive experiments evidence that all the models are qualified for generated graph detection, with specific models having advantages in specific scenarios. Resulting from the validated generality and oblivion of the classifiers to unseen datasets/generators, we draw a safe conclusion that our solution can sustain for a decent while to curb generated graph misuses.
Given a graph $G$, a community structure $\mathcal{C}$, and a budget $k$, the fair influence maximization problem aims to select a seed set $S$ ($|S|\leq k$) that maximizes the influence spread while narrowing the influence gap between different communities. While various fairness notions exist, the welfare fairness notion, which balances fairness level and influence spread, has shown promising effectiveness. However, the lack of efficient algorithms for optimizing the welfare fairness objective function restricts its application to small-scale networks with only a few hundred nodes. In this paper, we adopt the objective function of welfare fairness to maximize the exponentially weighted summation over the influenced fraction of all communities. We first introduce an unbiased estimator for the fractional power of the arithmetic mean. Then, by adapting the reverse influence sampling (RIS) approach, we convert the optimization problem to a weighted maximum coverage problem. We also analyze the number of reverse reachable sets needed to approximate the fair influence at a high probability. Further, we present an efficient algorithm that guarantees $1-1/e - \varepsilon$ approximation.
We present a new approach to semiparametric inference using corrected posterior distributions. The method allows us to leverage the adaptivity, regularization and predictive power of nonparametric Bayesian procedures to estimate low-dimensional functionals of interest without being restricted by the holistic Bayesian formalism. Starting from a conventional nonparametric posterior, we target the functional of interest by transforming the entire distribution with a Bayesian bootstrap correction. We provide conditions for the resulting $\textit{one-step posterior}$ to possess calibrated frequentist properties and specialize the results for several canonical examples: the integrated squared density, the mean of a missing-at-random outcome, and the average causal treatment effect on the treated. The procedure is computationally attractive, requiring only a simple, efficient post-processing step that can be attached onto any arbitrary posterior sampling algorithm. Using the ACIC 2016 causal data analysis competition, we illustrate that our approach can outperform the existing state-of-the-art through the propagation of Bayesian uncertainty.
We study a structured multi-agent multi-armed bandit (MAMAB) problem in a dynamic environment. A graph reflects the information-sharing structure among agents, and the arms' reward distributions are piecewise-stationary with several unknown change points. The agents face the identical piecewise-stationary MAB problem. The goal is to develop a decision-making policy for the agents that minimizes the regret, which is the expected total loss of not playing the optimal arm at each time step. Our proposed solution, Restarted Bayesian Online Change Point Detection in Cooperative Upper Confidence Bound Algorithm (RBO-Coop-UCB), involves an efficient multi-agent UCB algorithm as its core enhanced with a Bayesian change point detector. We also develop a simple restart decision cooperation that improves decision-making. Theoretically, we establish that the expected group regret of RBO-Coop-UCB is upper bounded by $\mathcal{O}(KNM\log T + K\sqrt{MT\log T})$, where K is the number of agents, M is the number of arms, and T is the number of time steps. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed method outperforms the state-of-the-art algorithms.
The fair allocation of mixed goods, consisting of both divisible and indivisible goods, among agents with heterogeneous preferences, has been a prominent topic of study in economics and computer science. In this paper, we investigate the nature of fair allocations when agents have binary valuations. We define an allocation as fair if its utility vector minimizes a symmetric strictly convex function, which includes conventional fairness criteria such as maximum egalitarian social welfare and maximum Nash social welfare. While a good structure is known for the continuous case (where only divisible goods exist) or the discrete case (where only indivisible goods exist), deriving such a structure in the hybrid case remains challenging. Our contributions are twofold. First, we demonstrate that the hybrid case does not inherit some of the nice properties of continuous or discrete cases, while it does inherit the proximity theorem. Second, we analyze the computational complexity of finding a fair allocation of mixed goods based on the proximity theorem. In particular, we provide a polynomial-time algorithm for the case when all divisible goods are identical and homogeneous, and demonstrate that the problem is NP-hard in general. Our results also contribute to a deeper understanding of the hybrid convex analysis.
We present prompt distribution learning for effectively adapting a pre-trained vision-language model to address downstream recognition tasks. Our method not only learns low-bias prompts from a few samples but also captures the distribution of diverse prompts to handle the varying visual representations. In this way, we provide high-quality task-related content for facilitating recognition. This prompt distribution learning is realized by an efficient approach that learns the output embeddings of prompts instead of the input embeddings. Thus, we can employ a Gaussian distribution to model them effectively and derive a surrogate loss for efficient training. Extensive experiments on 12 datasets demonstrate that our method consistently and significantly outperforms existing methods. For example, with 1 sample per category, it relatively improves the average result by 9.1% compared to human-crafted prompts.