亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Binwise Variance Scaling (BVS) has recently been proposed as a post hoc recalibration method for prediction uncertainties of machine learning regression problems that is able of more efficient corrections than uniform variance (or temperature) scaling. The original version of BVS uses uncertainty-based binning, which is aimed to improve calibration conditionally on uncertainty, i.e. consistency. I explore here several adaptations of BVS, in particular with alternative loss functions and a binning scheme based on an input-feature (X) in order to improve adaptivity, i.e. calibration conditional on X. The performances of BVS and its proposed variants are tested on a benchmark dataset for the prediction of atomization energies and compared to the results of isotonic regression.

相關內容

We consider the problem of chance constrained optimization where it is sought to optimize a function and satisfy constraints, both of which are affected by uncertainties. The real world declinations of this problem are particularly challenging because of their inherent computational cost. To tackle such problems, we propose a new Bayesian optimization method. It applies to the situation where the uncertainty comes from some of the inputs, so that it becomes possible to define an acquisition criterion in the joint controlled-uncontrolled input space. The main contribution of this work is an acquisition criterion that accounts for both the average improvement in objective function and the constraint reliability. The criterion is derived following the Stepwise Uncertainty Reduction logic and its maximization provides both optimal controlled and uncontrolled parameters. Analytical expressions are given to efficiently calculate the criterion. Numerical studies on test functions are presented. It is found through experimental comparisons with alternative sampling criteria that the adequation between the sampling criterion and the problem contributes to the efficiency of the overall optimization. As a side result, an expression for the variance of the improvement is given.

Pre-trained Language Models (PLMs) have shown to be consistently successful in a plethora of NLP tasks due to their ability to learn contextualized representations of words (Ethayarajh, 2019). BERT (Devlin et al., 2018), ELMo (Peters et al., 2018) and other PLMs encode word meaning via textual context, as opposed to static word embeddings, which encode all meanings of a word in a single vector representation. In this work, we present a study that aims to localize where exactly in a PLM word contextualization happens. In order to find the location of this word meaning transformation, we investigate representations of polysemous words in the basic BERT uncased 12 layer architecture (Devlin et al., 2018), a masked language model trained on an additional sentence adjacency objective, using qualitative and quantitative measures.

In several branches of the social sciences and humanities, surveys based on standardized questionnaires are a prominent research tool. While there are a variety of ways to analyze the data, some standard procedures have become established. When those surveys want to analyze differences in the answer patterns of different groups (e.g., countries, gender, age, ...), these procedures can only be carried out in a meaningful way if there is measurement invariance, i.e., the measured construct has psychometric equivalence across groups. As recently raised as an open problem by Sauerwein et al. (2021), new evaluation methods that work in the absence of measurement invariance are needed. This paper promotes an unsupervised learning-based approach to such research data by proposing a procedure that works in three phases: data preparation, clustering of questionnaires, and measuring similarity based on the obtained clustering and the properties of each group. We generate synthetic data in three data sets, which allows us to compare our approach with the PCA approach under measurement invariance and under violated measurement invariance. As a main result, we obtain that the approach provides a natural comparison between groups and a natural description of the response patterns of the groups. Moreover, it can be safely applied to a wide variety of data sets, even in the absence of measurement invariance. Finally, this approach allows us to translate (violations of) measurement invariance into a meaningful measure of similarity.

Large Language Models (LLMs) have emerged as powerful generative Artificial Intelligence solutions which can be applied to several fields and areas of work. This paper presents results and reflection of an experiment done to use the model GPT 3.5-Turbo to emulate some aspects of an inductive Thematic Analysis. Previous research on this subject has largely worked on conducting deductive analysis. Thematic Analysis is a qualitative method for analysis commonly used in social sciences and it is based on interpretations made by the human analyst(s) and the identification of explicit and latent meanings in qualitative data. Attempting an analysis based on human interpretation with an LLM clearly is a provocation but also a way to learn something about how these systems can or cannot be used in qualitative research. The paper presents the motivations for attempting this emulation, it reflects on how the six steps to a Thematic Analysis proposed by Braun and Clarke can at least partially be reproduced with the LLM and it also reflects on what are the outputs produced by the model. The paper used two existing datasets of open access semi-structured interviews, previously analysed with Thematic Analysis by other researchers. It used the previously produced analysis (and the related themes) to compare with the results produced by the LLM. The results show that the model can infer at least partially some of the main Themes. The objective of the paper is not to replace human analysts in qualitative analysis but to learn if some elements of LLM data manipulation can to an extent be of support for qualitative research.

Differential expression (DE) plays a fundamental role toward illuminating the molecular mechanisms driving a difference between groups (e.g., due to treatment or disease). While any analysis is run on particular cells/samples, the intent is to generalize to future occurrences of the treatment or disease. Implicitly, this step is justified by assuming that present and future samples are independent and identically distributed from the same population. Though this assumption is always false, we hope that any deviation from the assumption is small enough that A) conclusions of the analysis still hold and B) standard tools like standard error, significance, and power still reflect generalizability. Conversely, we might worry about these deviations, and reliance on standard tools, if conclusions could be substantively changed by dropping a very small fraction of data. While checking every small fraction is computationally intractable, recent work develops an approximation to identify when such an influential subset exists. Building on this work, we develop a metric for dropping-data robustness of DE; namely, we cast the analysis in a form suitable to the approximation, extend the approximation to models with data-dependent hyperparameters, and extend the notion of a data point from a single cell to a pseudobulk observation. We then overcome the inherent non-differentiability of gene set enrichment analysis to develop an additional approximation for the robustness of top gene sets. We assess robustness of DE for published single-cell RNA-seq data and discover that 1000s of genes can have their results flipped by dropping <1% of the data, including 100s that are sensitive to dropping a single cell (0.07%). Surprisingly, this non-robustness extends to high-level takeaways; half of the top 10 gene sets can be changed by dropping 1-2% of cells, and 2/10 can be changed by dropping a single cell.

This study elaborates a text-based metric to quantify the unique position of stylized scientific research, characterized by its innovative integration of diverse knowledge components and potential to pivot established scientific paradigms. Our analysis reveals a concerning decline in stylized research, highlighted by its comparative undervaluation in terms of citation counts and protracted peer-review duration. Despite facing these challenges, the disruptive potential of stylized research remains robust, consistently introducing groundbreaking questions and theories. This paper posits that substantive reforms are necessary to incentivize and recognize the value of stylized research, including optimizations to the peer-review process and the criteria for evaluating scientific impact. Embracing these changes may be imperative to halt the downturn in stylized research and ensure enduring scholarly exploration in endless frontiers.

We introduce a new continual (or lifelong) learning algorithm called LDA-CP&S that performs segmentation tasks without undergoing catastrophic forgetting. The method is applied to two different surface defect segmentation problems that are learned incrementally, i.e. providing data about one type of defect at a time, while still being capable of predicting every defect that was seen previously. Our method creates a defect-related subnetwork for each defect type via iterative pruning and trains a classifier based on linear discriminant analysis (LDA). At the inference stage, we first predict the defect type with LDA and then predict the surface defects using the selected subnetwork. We compare our method with other continual learning methods showing a significant improvement -- mean Intersection over Union better by a factor of two when compared to existing methods on both datasets. Importantly, our approach shows comparable results with joint training when all the training data (all defects) are seen simultaneously

Deep learning methods are emerging as popular computational tools for solving forward and inverse problems in traffic flow. In this paper, we study a neural operator framework for learning solutions to nonlinear hyperbolic partial differential equations with applications in macroscopic traffic flow models. In this framework, an operator is trained to map heterogeneous and sparse traffic input data to the complete macroscopic traffic state in a supervised learning setting. We chose a physics-informed Fourier neural operator ($\pi$-FNO) as the operator, where an additional physics loss based on a discrete conservation law regularizes the problem during training to improve the shock predictions. We also propose to use training data generated from random piecewise constant input data to systematically capture the shock and rarefied solutions. From experiments using the LWR traffic flow model, we found superior accuracy in predicting the density dynamics of a ring-road network and urban signalized road. We also found that the operator can be trained using simple traffic density dynamics, e.g., consisting of $2-3$ vehicle queues and $1-2$ traffic signal cycles, and it can predict density dynamics for heterogeneous vehicle queue distributions and multiple traffic signal cycles $(\geq 2)$ with an acceptable error. The extrapolation error grew sub-linearly with input complexity for a proper choice of the model architecture and training data. Adding a physics regularizer aided in learning long-term traffic density dynamics, especially for problems with periodic boundary data.

Distributed quantum computing, particularly distributed quantum machine learning, has gained substantial prominence for its capacity to harness the collective power of distributed quantum resources, transcending the limitations of individual quantum nodes. Meanwhile, the critical concern of privacy within distributed computing protocols remains a significant challenge, particularly in standard classical federated learning (FL) scenarios where data of participating clients is susceptible to leakage via gradient inversion attacks by the server. This paper presents innovative quantum protocols with quantum communication designed to address the FL problem, strengthen privacy measures, and optimize communication efficiency. In contrast to previous works that leverage expressive variational quantum circuits or differential privacy techniques, we consider gradient information concealment using quantum states and propose two distinct FL protocols, one based on private inner-product estimation and the other on incremental learning. These protocols offer substantial advancements in privacy preservation with low communication resources, forging a path toward efficient quantum communication-assisted FL protocols and contributing to the development of secure distributed quantum machine learning, thus addressing critical privacy concerns in the quantum computing era.

Current approaches to generic segmentation start by creating a hierarchy of nested image partitions and then specifying a segmentation from it. Our first contribution is to describe several ways, most of them new, for specifying segmentations using the hierarchy elements. Then, we consider the best hierarchy-induced segmentation specified by a limited number of hierarchy elements. We focus on a common quality measure for binary segmentations, the Jaccard index (also known as IoU). Optimizing the Jaccard index is highly non-trivial, and yet we propose an efficient approach for doing exactly that. This way we get algorithm-independent upper bounds on the quality of any segmentation created from the hierarchy. We found that the obtainable segmentation quality varies significantly depending on the way that the segments are specified by the hierarchy elements, and that representing a segmentation with only a few hierarchy elements is often possible. (Code is available).

北京阿比特科技有限公司