亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates an induction heating problem in a multi-component system containing a moving non-magnetic conductor. The electromagnetic process is described by the eddy current model, and the heat transfer process is governed by the convection-diffusion equation. Both processes are coupled by a restrained Joule heat source. A temporal discretization scheme is introduced to solve the corresponding variational system numerically. With the aid of the Reynolds transport theorem, we prove the convergence of the proposed scheme as well as the well-posedness of the variational problem. Some numerical experiments are also performed to assess the performance of the numerical scheme.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

In applications of group testing in networks, e.g. identifying individuals who are infected by a disease spread over a network, exploiting correlation among network nodes provides fundamental opportunities in reducing the number of tests needed. We model and analyze group testing on $n$ correlated nodes whose interactions are specified by a graph $G$. We model correlation through an edge-faulty random graph formed from $G$ in which each edge is dropped with probability $1-r$, and all nodes in the same component have the same state. We consider three classes of graphs: cycles and trees, $d$-regular graphs and stochastic block models or SBM, and obtain lower and upper bounds on the number of tests needed to identify the defective nodes. Our results are expressed in terms of the number of tests needed when the nodes are independent and they are in terms of $n$, $r$, and the target error. In particular, we quantify the fundamental improvements that exploiting correlation offers by the ratio between the total number of nodes $n$ and the equivalent number of independent nodes in a classic group testing algorithm. The lower bounds are derived by illustrating a strong dependence of the number of tests needed on the expected number of components. In this regard, we establish a new approximation for the distribution of component sizes in "$d$-regular trees" which may be of independent interest and leads to a lower bound on the expected number of components in $d$-regular graphs. The upper bounds are found by forming dense subgraphs in which nodes are more likely to be in the same state. When $G$ is a cycle or tree, we show an improvement by a factor of $log(1/r)$. For grid, a graph with almost $2n$ edges, the improvement is by a factor of ${(1-r) \log(1/r)}$, indicating drastic improvement compared to trees. When $G$ has a larger number of edges, as in SBM, the improvement can scale in $n$.

It is a common phenomenon that for high-dimensional and nonparametric statistical models, rate-optimal estimators balance squared bias and variance. Although this balancing is widely observed, little is known whether methods exist that could avoid the trade-off between bias and variance. We propose a general strategy to obtain lower bounds on the variance of any estimator with bias smaller than a prespecified bound. This shows to which extent the bias-variance trade-off is unavoidable and allows to quantify the loss of performance for methods that do not obey it. The approach is based on a number of abstract lower bounds for the variance involving the change of expectation with respect to different probability measures as well as information measures such as the Kullback-Leibler or $\chi^2$-divergence. In a second part of the article, the abstract lower bounds are applied to several statistical models including the Gaussian white noise model, a boundary estimation problem, the Gaussian sequence model and the high-dimensional linear regression model. For these specific statistical applications, different types of bias-variance trade-offs occur that vary considerably in their strength. For the trade-off between integrated squared bias and integrated variance in the Gaussian white noise model, we propose to combine the general strategy for lower bounds with a reduction technique. This allows us to reduce the original problem to a lower bound on the bias-variance trade-off for estimators with additional symmetry properties in a simpler statistical model. In the Gaussian sequence model, different phase transitions of the bias-variance trade-off occur. Although there is a non-trivial interplay between bias and variance, the rate of the squared bias and the variance do not have to be balanced in order to achieve the minimax estimation rate.

A finite element discretization is developed for the Cai-Hu model, describing the formation of biological networks. The model consists of a non linear elliptic equation for the pressure $p$ and a non linear reaction-diffusion equation for the conductivity tensor $\mathbb{C}$. The problem requires high resolution due to the presence of multiple scales, the stiffness in all its components and the non linearities. We propose a low order finite element discretization in space coupled with a semi-implicit time advancing scheme. The code is validated with several numerical tests performed with various choices for the parameters involved in the system. In absence of the exact solution, we apply Richardson extrapolation technique to estimate the order of the method.

The local convergence of an inexact Newton method is studied for solving generalized equations on Riemannian manifolds by using the metric regularity property which is explored as well. Under suitable conditions and without any additional geometric assumptions, local convergence results with linear and quadratic rate and a semi-local convergence result are obtained for the proposed method. Finally, the theory can be applied to problems of finding a singularity of the sum of two vector fields.

We prove a weak rate of convergence of a fully discrete scheme for stochastic Cahn--Hilliard equation with additive noise, where the spectral Galerkin method is used in space and the backward Euler method is used in time. Compared with the Allen--Cahn type stochastic partial differential equation, the error analysis here is much more sophisticated due to the presence of the unbounded operator in front of the nonlinear term. To address such issues, a novel and direct approach has been exploited which does not rely on a Kolmogorov equation but on the integration by parts formula from Malliavin calculus. To the best of our knowledge, the rates of weak convergence are revealed in the stochastic Cahn--Hilliard equation setting for the first time.

This paper considers the Cauchy problem for the nonlinear dynamic string equation of Kirchhoff-type with time-varying coefficients. The objective of this work is to develop a temporal discretization algorithm capable of approximating a solution to this initial-boundary value problem. To this end, a symmetric three-layer semi-discrete scheme is employed with respect to the temporal variable, wherein the value of a nonlinear term is evaluated at the middle node point. This approach enables the numerical solutions per temporal step to be obtained by inverting the linear operators, yielding a system of second-order linear ordinary differential equations. Local convergence of the proposed scheme is established, and it achieves quadratic convergence concerning the step size of the discretization of time on the local temporal interval.

We consider decentralized optimization problems in which a number of agents collaborate to minimize the average of their local functions by exchanging over an underlying communication graph. Specifically, we place ourselves in an asynchronous model where only a random portion of nodes perform computation at each iteration, while the information exchange can be conducted between all the nodes and in an asymmetric fashion. For this setting, we propose an algorithm that combines gradient tracking with a network-level variance reduction (in contrast to variance reduction within each node). This enables each node to track the average of the gradients of the objective functions. Our theoretical analysis shows that the algorithm converges linearly, when the local objective functions are strongly convex, under mild connectivity conditions on the expected mixing matrices. In particular, our result does not require the mixing matrices to be doubly stochastic. In the experiments, we investigate a broadcast mechanism that transmits information from computing nodes to their neighbors, and confirm the linear convergence of our method on both synthetic and real-world datasets.

Nonlinearity parameter tomography leads to the problem of identifying a coefficient in a nonlinear wave equation (such as the Westervelt equation) modeling ultrasound propagation. In this paper we transfer this into frequency domain, where the Westervelt equation gets replaced by a coupled system of Helmholtz equations with quadratic nonlinearities. For the case of the to-be-determined nonlinearity coefficient being a characteristic function of an unknown, not necessarily connected domain $D$, we devise and test a reconstruction algorithm based on weighted point source approximations combined with Newton's method. In a more abstract setting, convergence of a regularised Newton type method for this inverse problem is proven by verifying a range invariance condition of the forward operator and establishing injectivity of its linearisation.

This paper explores continuous-time control synthesis for target-driven navigation to satisfy complex high-level tasks expressed as linear temporal logic (LTL). We propose a model-free framework using deep reinforcement learning (DRL) where the underlying dynamic system is unknown (an opaque box). Unlike prior work, this paper considers scenarios where the given LTL specification might be infeasible and therefore cannot be accomplished globally. Instead of modifying the given LTL formula, we provide a general DRL-based approach to satisfy it with minimal violation. To do this, we transform a previously multi-objective DRL problem, which requires simultaneous automata satisfaction and minimum violation cost, into a single objective. By guiding the DRL agent with a sampling-based path planning algorithm for the potentially infeasible LTL task, the proposed approach mitigates the myopic tendencies of DRL, which are often an issue when learning general LTL tasks that can have long or infinite horizons. This is achieved by decomposing an infeasible LTL formula into several reach-avoid sub-tasks with shorter horizons, which can be trained in a modular DRL architecture. Furthermore, we overcome the challenge of the exploration process for DRL in complex and cluttered environments by using path planners to design rewards that are dense in the configuration space. The benefits of the presented approach are demonstrated through testing on various complex nonlinear systems and compared with state-of-the-art baselines. The Video demonstration can be found here://youtu.be/jBhx6Nv224E.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司