亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper derives a discrete dual problem for a prototypical hybrid high-order method for convex minimization problems. The discrete primal and dual problem satisfy a weak convex duality that leads to a priori error estimates with convergence rates under additional smoothness assumptions. This duality holds for general polytopal meshes and arbitrary polynomial degree of the discretization. A nouvelle postprocessing is proposed and allows for a~posteriori error estimates on simplicial meshes using primal-dual techniques. This motivates an adaptive mesh-refining algorithm, which performs superiorly compared to uniform mesh refinements.

相關內容

This paper introduces novel weighted conformal p-values and methods for model-free selective inference. The problem is as follows: given test units with covariates $X$ and missing responses $Y$, how do we select units for which the responses $Y$ are larger than user-specified values while controlling the proportion of false positives? Can we achieve this without any modeling assumptions on the data and without any restriction on the model for predicting the responses? Last, methods should be applicable when there is a covariate shift between training and test data, which commonly occurs in practice. We answer these questions by first leveraging any prediction model to produce a class of well-calibrated weighted conformal p-values, which control the type-I error in detecting a large response. These p-values cannot be passed on to classical multiple testing procedures since they may not obey a well-known positive dependence property. Hence, we introduce weighted conformalized selection (WCS), a new procedure which controls false discovery rate (FDR) in finite samples. Besides prediction-assisted candidate selection, WCS (1) allows to infer multiple individual treatment effects, and (2) extends to outlier detection with inlier distributions shifts. We demonstrate performance via simulations and applications to causal inference, drug discovery, and outlier detection datasets.

This paper introduces a unified framework called cooperative extensive form games, which (i) generalizes standard non-cooperative games, and (ii) allows for more complex coalition formation dynamics than previous concepts like coalition-proof Nash equilibrium. Central to this framework is a novel solution concept called cooperative equilibrium system (CES). CES differs from Nash equilibrium in two important respects. First, a CES is immune to both unilateral and multilateral `credible' deviations. Second, unlike Nash equilibrium, whose stability relies on the assumption that the strategies of non-deviating players are held fixed, CES allows for the possibility that players may regroup and adjust their strategies in response to a deviation. The main result establishes that every cooperative extensive form game, possibly with imperfect information, possesses a CES. For games with perfect information, the proof is constructive. This framework is broadly applicable in contexts such as oligopolistic markets and dynamic political bargaining.

This note presents a refined local approximation for the logarithm of the ratio between the negative multinomial probability mass function and a multivariate normal density, both having the same mean-covariance structure. This approximation, which is derived using Stirling's formula and a meticulous treatment of Taylor expansions, yields an upper bound on the Hellinger distance between the jittered negative multinomial distribution and the corresponding multivariate normal distribution. Upper bounds on the Le Cam distance between negative multinomial and multivariate normal experiments ensue.

This study examines, in the framework of variational regularization methods, a multi-penalty regularization approach which builds upon the Uniform PENalty (UPEN) method, previously proposed by the authors for Nuclear Magnetic Resonance (NMR) data processing. The paper introduces two iterative methods, UpenMM and GUpenMM, formulated within the Majorization-Minimization (MM) framework. These methods are designed to identify appropriate regularization parameters and solutions for linear inverse problems utilizing multi-penalty regularization. The paper demonstrates the convergence of these methods and illustrates their potential through numerical examples in one and two-dimensional scenarios, showing the practical utility of point-wise regularization terms in solving various inverse problems.

We construct a family of Markov decision processes for which the policy iteration algorithm needs an exponential number of improving switches with Dantzig's rule, with Bland's rule, and with the Largest Increase pivot rule. This immediately translates to a family of linear programs for which the simplex algorithm needs an exponential number of pivot steps with the same three pivot rules. Our results yield a unified construction that simultaneously reproduces well-known lower bounds for these classical pivot rules, and we are able to infer that any (deterministic or randomized) combination of them cannot avoid an exponential worst-case behavior. Regarding the policy iteration algorithm, pivot rules typically switch multiple edges simultaneously and our lower bound for Dantzig's rule and the Largest Increase rule, which perform only single switches, seem novel. Regarding the simplex algorithm, the individual lower bounds were previously obtained separately via deformed hypercube constructions. In contrast to previous bounds for the simplex algorithm via Markov decision processes, our rigorous analysis is reasonably concise.

We address a classical problem in statistics: adding two-way interaction terms to a regression model. As the covariate dimension increases quadratically, we develop an estimator that adapts well to this increase, while providing accurate estimates and appropriate inference. Existing strategies overcome the dimensionality problem by only allowing interactions between relevant main effects. Building on this philosophy, we implement a softer link between the two types of effects using a local shrinkage model. We empirically show that borrowing strength between the amount of shrinkage for main effects and their interactions can strongly improve estimation of the regression coefficients. Moreover, we evaluate the potential of the model for inference, which is notoriously hard for selection strategies. Large-scale cohort data are used to provide realistic illustrations and evaluations. Comparisons with other methods are provided. The evaluation of variable importance is not trivial in regression models with many interaction terms. Therefore, we derive a new analytical formula for the Shapley value, which enables rapid assessment of individual-specific variable importance scores and their uncertainties. Finally, while not targeting for prediction, we do show that our models can be very competitive to a more advanced machine learner, like random forest, even for fairly large sample sizes. The implementation of our method in RStan is fairly straightforward, allowing for adjustments to specific needs.

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

In this paper, a high-order approximation to Caputo-type time-fractional diffusion equations involving an initial-time singularity of the solution is proposed. At first, we employ a numerical algorithm based on the Lagrange polynomial interpolation to approximate the Caputo derivative on the non-uniform mesh. Then truncation error rate and the optimal grading constant of the approximation on a graded mesh are obtained as $\min\{4-\alpha,r\alpha\}$ and $\frac{4-\alpha}{\alpha}$, respectively, where $\alpha\in(0,1)$ is the order of fractional derivative and $r\geq 1$ is the mesh grading parameter. Using this new approximation, a difference scheme for the Caputo-type time-fractional diffusion equation on graded temporal mesh is formulated. The scheme proves to be uniquely solvable for general $r$. Then we derive the unconditional stability of the scheme on uniform mesh. The convergence of the scheme, in particular for $r=1$, is analyzed for non-smooth solutions and concluded for smooth solutions. Finally, the accuracy of the scheme is verified by analyzing the error through a few numerical examples.

Surface defect inspection is of great importance for industrial manufacture and production. Though defect inspection methods based on deep learning have made significant progress, there are still some challenges for these methods, such as indistinguishable weak defects and defect-like interference in the background. To address these issues, we propose a transformer network with multi-stage CNN (Convolutional Neural Network) feature injection for surface defect segmentation, which is a UNet-like structure named CINFormer. CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder. This can maintain the merit of CNN capturing detailed features and that of transformer depressing noises in the background, which facilitates accurate defect detection. In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects, so as to further reduce the impact of the redundant background. Extensive experiments conducted on the surface defect datasets DAGM 2007, Magnetic tile, and NEU show that the proposed CINFormer achieves state-of-the-art performance in defect detection.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

北京阿比特科技有限公司