亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In 1-bit matrix completion, the aim is to estimate an underlying low-rank matrix from a partial set of binary observations. We propose a novel method for 1-bit matrix completion called MMGN. Our method is based on the majorization-minimization (MM) principle, which yields a sequence of standard low-rank matrix completion problems in our setting. We solve each of these sub-problems by a factorization approach that explicitly enforces the assumed low-rank structure and then apply a Gauss-Newton method. Our numerical studies and application to a real-data example illustrate that MMGN outputs comparable if not more accurate estimates, is often significantly faster, and is less sensitive to the spikiness of the underlying matrix than existing methods.

相關內容

Studying conditional independence structure among many variables with few observations is a challenging task. Gaussian Graphical Models (GGMs) tackle this problem by encouraging sparsity in the precision matrix through an $l_p$ regularization with $p\leq1$. However, since the objective is highly non-convex for sub-$l_1$ pseudo-norms, most approaches rely on the $l_1$ norm. In this case frequentist approaches allow to elegantly compute the solution path as a function of the shrinkage parameter $\lambda$. Instead of optimizing the penalized likelihood, the Bayesian formulation introduces a Laplace prior on the precision matrix. However, posterior inference for different $\lambda$ values requires repeated runs of expensive Gibbs samplers. We propose a very general framework for variational inference in GGMs that unifies the benefits of frequentist and Bayesian frameworks. Specifically, we propose to approximate the posterior with a matrix-variate Normalizing Flow defined on the space of symmetric positive definite matrices. As a key improvement on previous work, we train a continuum of sparse regression models jointly for all regularization parameters $\lambda$ and all $l_p$ norms, including non-convex sub-$l_1$ pseudo-norms. This is achieved by conditioning the flow on $p>0$ and on the shrinkage parameter $\lambda$. We have then access with one model to (i) the evolution of the posterior for any $\lambda$ and for any $l_p$ (pseudo-) norms, (ii) the marginal log-likelihood for model selection, and (iii) we can recover the frequentist solution paths as the MAP, which is obtained through simulated annealing.

Over the past decade, Plug-and-Play (PnP) has become a popular method for reconstructing images using a modular framework consisting of a forward and prior model. The great strength of PnP is that an image denoiser can be used as a prior model while the forward model can be implemented using more traditional physics-based approaches. However, a limitation of PnP is that it reconstructs only a single deterministic image. In this paper, we introduce Generative Plug-and-Play (GPnP), a generalization of PnP to sample from the posterior distribution. As with PnP, GPnP has a modular framework using a physics-based forward model and an image denoising prior model. However, in GPnP these models are extended to become proximal generators, which sample from associated distributions. GPnP applies these proximal generators in alternation to produce samples from the posterior. We present experimental simulations using the well-known BM3D denoiser. Our results demonstrate that the GPnP method is robust, easy to implement, and produces intuitively reasonable samples from the posterior for sparse interpolation and tomographic reconstruction. Code to accompany this paper is available at //github.com/gbuzzard/generative-pnp-allerton .

Modelling in biology must adapt to increasingly complex and massive data. The efficiency of the inference algorithms used to estimate model parameters is therefore questioned. Many of these are based on stochastic optimization processes which waste a significant part of the computation time due to their rejection sampling approaches. We introduce the Fixed Landscape Inference MethOd (flimo), a new likelihood-free inference method for continuous state-space stochastic models. It applies deterministic gradient-based optimization algorithms to obtain a point estimate of the parameters, minimizing the difference between the data and some simulations according to some prescribed summary statistics. In this sense, it is analogous to Approximate Bayesian Computation (ABC). Like ABC, it can also provide an approximation of the distribution of the parameters. Three applications are proposed: a usual theoretical example, namely the inference of the parameters of g-and-k distributions; a population genetics problem, not so simple as it seems, namely the inference of a selective value from time series in a Wright-Fisher model; and simulations from a Ricker model, representing chaotic population dynamics. In the two first applications, the results show a drastic reduction of the computational time needed for the inference phase compared to the other methods, despite an equivalent accuracy. Even when likelihood-based methods are applicable, the simplicity and efficiency of flimo make it a compelling alternative. Implementations in Julia and in R are available on //metabarcoding.org/flimo. To run flimo, the user must simply be able to simulate data according to the chosen model.

Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous Poisson process conditioned on the realization of a random intensity function. They are flexible tools for capturing spatial heterogeneity and dependence. However, implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions. We propose a penalized regression method for estimating covariate effects in doubly-stochastic point processes that is computationally efficient and does not require a parametric form or stationarity of the underlying intensity. We establish the consistency and asymptotic normality of the proposed estimator, and develop a covariance estimator that leads to a conservative statistical inference procedure. A simulation study shows the validity of our approach under less restrictive assumptions on the data generating mechanism, and an application to Seattle crime data demonstrates better prediction accuracy compared with existing alternatives.

In this paper, we conduct an in-depth investigation of the structural intricacies inherent to the Invariant Energy Quadratization (IEQ) method as applied to gradient flows, and we dissect the mechanisms that enable this method to uphold linearity and the conservation of energy simultaneously. Building upon this foundation, we propose two methods: Invariant Energy Convexification and Invariant Energy Functionalization. These approaches can be perceived as natural extensions of the IEQ method. Employing our novel approaches, we reformulate the system connected to gradient flow, construct a semi-discretized numerical scheme, and obtain a commensurate modified energy dissipation law for both proposed methods. Finally, to underscore their practical utility, we provide numerical evidence demonstrating these methods' accuracy, stability, and effectiveness when applied to both Allen-Cahn and Cahn-Hilliard equations.

For potential quantum advantage, Variational Quantum Algorithms (VQAs) need high accuracy beyond the capability of today's NISQ devices, and thus will benefit from error mitigation. In this work we are interested in mitigating measurement errors which occur during qubit measurements after circuit execution and tend to be the most error-prone operations, especially detrimental to VQAs. Prior work, JigSaw, has shown that measuring only small subsets of circuit qubits at a time and collecting results across all such subset circuits can reduce measurement errors. Then, running the entire (global) original circuit and extracting the qubit-qubit measurement correlations can be used in conjunction with the subsets to construct a high-fidelity output distribution of the original circuit. Unfortunately, the execution cost of JigSaw scales polynomially in the number of qubits in the circuit, and when compounded by the number of circuits and iterations in VQAs, the resulting execution cost quickly turns insurmountable. To combat this, we propose VarSaw, which improves JigSaw in an application-tailored manner, by identifying considerable redundancy in the JigSaw approach for VQAs: spatial redundancy across subsets from different VQA circuits and temporal redundancy across globals from different VQA iterations. VarSaw then eliminates these forms of redundancy by commuting the subset circuits and selectively executing the global circuits, reducing computational cost (in terms of the number of circuits executed) over naive JigSaw for VQA by 25x on average and up to 1000x, for the same VQA accuracy. Further, it can recover, on average, 45% of the infidelity from measurement errors in the noisy VQA baseline. Finally, it improves fidelity by 55%, on average, over JigSaw for a fixed computational budget. VarSaw can be accessed here: //github.com/siddharthdangwal/VarSaw.

This paper investigates the problem of simultaneously predicting multiple binary responses by utilizing a shared set of covariates. Our approach incorporates machine learning techniques for binary classification, without making assumptions about the underlying observations. Instead, our focus lies on a group of predictors, aiming to identify the one that minimizes prediction error. Unlike previous studies that primarily address estimation error, we directly analyze the prediction error of our method using PAC-Bayesian bounds techniques. In this paper, we introduce a pseudo-Bayesian approach capable of handling incomplete response data. Our strategy is efficiently implemented using the Langevin Monte Carlo method. Through simulation studies and a practical application using real data, we demonstrate the effectiveness of our proposed method, producing comparable or sometimes superior results compared to the current state-of-the-art method.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

北京阿比特科技有限公司