亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the face of dataset shift, model calibration plays a pivotal role in ensuring the reliability of machine learning systems. Calibration error (CE) is an indicator of the alignment between the predicted probabilities and the classifier accuracy. While prior works have delved into the implications of dataset shift on calibration, existing CE estimators assume access to labels from the target domain, which are often unavailable in practice, i.e., when the model is deployed and used. This work addresses such challenging scenario, and proposes a novel CE estimator under label shift, which is characterized by changes in the marginal label distribution $p(Y)$, while keeping the conditional $p(X|Y)$ constant between the source and target distributions. Our contribution is an approach, which, by leveraging importance re-weighting of the labeled source distribution, provides consistent and asymptotically unbiased CE estimation with respect to the shifted target distribution. Empirical results across diverse real-world datasets, under various conditions and label-shift intensities, demonstrate the effectiveness and reliability of the proposed estimator.

相關內容

In traditional Machine Learning, the algorithms predictions are based on the assumption that the data follows the same distribution in both the training and the test datasets. However, in real world data this condition does not hold and, for instance, the distribution of the covariates changes whereas the conditional distribution of the targets remains unchanged. This situation is called covariate shift problem where standard error estimation may be no longer accurate. In this context, the importance is a measure commonly used to alleviate the influence of covariate shift on error estimations. The main drawback is that it is not easy to compute. The Kullback-Leibler Importance Estimation Procedure (KLIEP) is capable of estimating importance in a promising way. Despite its good performance, it fails to ignore target information, since it only includes the covariates information for computing the importance. In this direction, this paper explores the potential performance improvement if target information is considered in the computation of the importance. Then, a redefinition of the importance arises in order to be generalized in this way. Besides the potential improvement in performance, including target information make possible the application to a real application about plankton classification that motivates this research and characterized by its great dimensionality, since considering targets rather than covariates reduces the computation and the noise in the covariates. The impact of taking target information is also explored when Logistic Regression (LR), Kernel Mean Matching (KMM), Ensemble Kernel Mean Matching (EKMM) and the naive predecessor of KLIEP called Kernel Density Estimation (KDE) methods estimate the importance. The experimental results lead to a more accurate error estimation using target information, especially in case of the more promising method KLIEP.

Generative diffusion models and many stochastic models in science and engineering naturally live in infinite dimensions before discretisation. To incorporate observed data for statistical and learning tasks, one needs to condition on observations. While recent work has treated conditioning linear processes in infinite dimensions, conditioning non-linear processes in infinite dimensions has not been explored. This paper conditions function valued stochastic processes without prior discretisation. To do so, we use an infinite-dimensional version of Girsanov's theorem to condition a function-valued stochastic process, leading to a stochastic differential equation (SDE) for the conditioned process involving the score. We apply this technique to do time series analysis for shapes of organisms in evolutionary biology, where we discretise via the Fourier basis and then learn the coefficients of the score function with score matching methods.

Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.

Reinforcement learning is well known for its ability to model sequential tasks and learn latent data patterns adaptively. Deep learning models have been widely explored and adopted in regression and classification tasks. However, deep learning has its limitations such as the assumption of equally spaced and ordered data, and the lack of ability to incorporate graph structure in terms of time-series prediction. Graphical neural network (GNN) has the ability to overcome these challenges and capture the temporal dependencies in time-series data. In this study, we propose a novel approach for predicting time-series data using GNN and monitoring with Reinforcement Learning (RL). GNNs are able to explicitly incorporate the graph structure of the data into the model, allowing them to capture temporal dependencies in a more natural way. This approach allows for more accurate predictions in complex temporal structures, such as those found in healthcare, traffic and weather forecasting. We also fine-tune our GraphRL model using a Bayesian optimisation technique to further improve performance. The proposed framework outperforms the baseline models in time-series forecasting and monitoring. The contributions of this study include the introduction of a novel GraphRL framework for time-series prediction and the demonstration of the effectiveness of GNNs in comparison to traditional deep learning models such as RNNs and LSTMs. Overall, this study demonstrates the potential of GraphRL in providing accurate and efficient predictions in dynamic RL environments.

Latitude on the choice of initialisation is a shared feature between one-step extended state-space and multi-step methods. The paper focuses on lattice Boltzmann schemes, which can be interpreted as examples of both previous categories of numerical schemes. We propose a modified equation analysis of the initialisation schemes for lattice Boltzmann methods, determined by the choice of initial data. These modified equations provide guidelines to devise and analyze the initialisation in terms of order of consistency with respect to the target Cauchy problem and time smoothness of the numerical solution. In detail, the larger the number of matched terms between modified equations for initialisation and bulk methods, the smoother the obtained numerical solution. This is particularly manifest for numerical dissipation. Starting from the constraints to achieve time smoothness, which can quickly become prohibitive for they have to take the parasitic modes into consideration, we explain how the distinct lack of observability for certain lattice Boltzmann schemes -- seen as dynamical systems on a commutative ring -- can yield rather simple conditions and be easily studied as far as their initialisation is concerned. This comes from the reduced number of initialisation schemes at the fully discrete level. These theoretical results are successfully assessed on several lattice Boltzmann methods.

The Na\"ive Bayes has proven to be a tractable and efficient method for classification in multivariate analysis. However, features are usually correlated, a fact that violates the Na\"ive Bayes' assumption of conditional independence, and may deteriorate the method's performance. Moreover, datasets are often characterized by a large number of features, which may complicate the interpretation of the results as well as slow down the method's execution. In this paper we propose a sparse version of the Na\"ive Bayes classifier that is characterized by three properties. First, the sparsity is achieved taking into account the correlation structure of the covariates. Second, different performance measures can be used to guide the selection of features. Third, performance constraints on groups of higher interest can be included. Our proposal leads to a smart search, which yields competitive running times, whereas the flexibility in terms of performance measure for classification is integrated. Our findings show that, when compared against well-referenced feature selection approaches, the proposed sparse Na\"ive Bayes obtains competitive results regarding accuracy, sparsity and running times for balanced datasets. In the case of datasets with unbalanced (or with different importance) classes, a better compromise between classification rates for the different classes is achieved.

The Lasso has become a benchmark data analysis procedure, and numerous variants have been proposed in the literature. Although the Lasso formulations are stated so that overall prediction error is optimized, no full control over the accuracy prediction on certain individuals of interest is allowed. In this work we propose a novel version of the Lasso in which quadratic performance constraints are added to Lasso-based objective functions, in such a way that threshold values are set to bound the prediction errors in the different groups of interest (not necessarily disjoint). As a result, a constrained sparse regression model is defined by a nonlinear optimization problem. This cost-sensitive constrained Lasso has a direct application in heterogeneous samples where data are collected from distinct sources, as it is standard in many biomedical contexts. Both theoretical properties and empirical studies concerning the new method are explored in this paper. In addition, two illustrations of the method on biomedical and sociological contexts are considered.

Large Vision-Language Models (VLMs) have demonstrated impressive performance on complex tasks involving visual input with natural language instructions. However, it remains unclear to what extent capabilities on natural images transfer to Earth observation (EO) data, which are predominantly satellite and aerial images less common in VLM training data. In this work, we propose a comprehensive benchmark to gauge the progress of VLMs toward being useful tools for EO data by assessing their abilities on scene understanding, localization and counting, and change detection tasks. Motivated by real-world applications, our benchmark includes scenarios like urban monitoring, disaster relief, land use, and conservation. We discover that, although state-of-the-art VLMs like GPT-4V possess extensive world knowledge that leads to strong performance on open-ended tasks like location understanding and image captioning, their poor spatial reasoning limits usefulness on object localization and counting tasks. Our benchmark will be made publicly available at //vleo.danielz.ch/ and on Hugging Face at //huggingface.co/collections/mit-ei/vleo-benchmark-datasets-65b789b0466555489cce0d70 for easy model evaluation.

A general quantum circuit can be simulated classically in exponential time. If it has a planar layout, then a tensor-network contraction algorithm due to Markov and Shi has a runtime exponential in the square root of its size, or more generally exponential in the treewidth of the underlying graph. Separately, Gottesman and Knill showed that if all gates are restricted to be Clifford, then there is a polynomial time simulation. We combine these two ideas and show that treewidth and planarity can be exploited to improve Clifford circuit simulation. Our main result is a classical algorithm with runtime scaling asymptotically as $n^{\omega/2}<n^{1.19}$ which samples from the output distribution obtained by measuring all $n$ qubits of a planar graph state in given Pauli bases. Here $\omega$ is the matrix multiplication exponent. We also provide a classical algorithm with the same asymptotic runtime which samples from the output distribution of any constant-depth Clifford circuit in a planar geometry. Our work improves known classical algorithms with cubic runtime. A key ingredient is a mapping which, given a tree decomposition of some graph $G$, produces a Clifford circuit with a structure that mirrors the tree decomposition and which emulates measurement of the corresponding graph state. We provide a classical simulation of this circuit with the runtime stated above for planar graphs and otherwise $nt^{\omega-1}$ where $t$ is the width of the tree decomposition. Our algorithm incorporates two subroutines which may be of independent interest. The first is a matrix-multiplication-time version of the Gottesman-Knill simulation of multi-qubit measurement on stabilizer states. The second is a new classical algorithm for solving symmetric linear systems over $\mathbb{F}_2$ in a planar geometry, extending previous works which only applied to non-singular linear systems in the analogous setting.

The world's digital information ecosystem continues to struggle with the spread of misinformation. Prior work has suggested that users who consistently disseminate a disproportionate amount of low-credibility content -- so-called superspreaders -- are at the center of this problem. We quantitatively confirm this hypothesis and introduce simple metrics to predict the top superspreaders several months into the future. We then conduct a qualitative review to characterize the most prolific superspreaders and analyze their sharing behaviors. Superspreaders include pundits with large followings, low-credibility media outlets, personal accounts affiliated with those media outlets, and a range of influencers. They are primarily political in nature and use more toxic language than the typical user sharing misinformation. We also find concerning evidence that suggests Twitter may be overlooking prominent superspreaders. We hope this work will further public understanding of bad actors and promote steps to mitigate their negative impacts on healthy digital discourse.

北京阿比特科技有限公司