亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the design of embeddings into Euclidean space with outliers. Given a metric space $(X,d)$ and an integer $k$, the goal is to embed all but $k$ points in $X$ (called the "outliers") into $\ell_2$ with the smallest possible distortion $c$. Finding the optimal distortion $c$ for a given outlier set size $k$, or alternately the smallest $k$ for a given target distortion $c$ are both NP-hard problems. In fact, it is UGC-hard to approximate $k$ to within a factor smaller than $2$ even when the metric sans outliers is isometrically embeddable into $\ell_2$. We consider bi-criteria approximations. Our main result is a polynomial time algorithm that approximates the outlier set size to within an $O(\log^4 k)$ factor and the distortion to within a constant factor. The main technical component in our result is an approach for constructing a composition of two given embeddings from subsets of $X$ into $\ell_2$ which inherits the distortions of each to within small multiplicative factors. Specifically, given a low $c_S$ distortion embedding from $S\subset X$ into $\ell_2$ and a high(er) $c_X$ distortion embedding from the entire set $X$ into $\ell_2$, we construct a single embedding that achieves the same distortion $c_S$ over pairs of points in $S$ and an expansion of at most $O(\log k)\cdot c_X$ over the remaining pairs of points, where $k=|X\setminus S|$. Our composition theorem extends to embeddings into arbitrary $\ell_p$ metrics for $p\ge 1$, and may be of independent interest. While unions of embeddings over disjoint sets have been studied previously, to our knowledge, this is the first work to consider compositions of nested embeddings.

相關內容

In this study, a novel preconditioner based on the absolute-value block $\alpha$-circulant matrix approximation is developed, specifically designed for nonsymmetric dense block lower triangular Toeplitz (BLTT) systems that emerge from the numerical discretization of evolutionary equations. Our preconditioner is constructed by taking an absolute-value of a block $\alpha$-circulant matrix approximation to the BLTT matrix. To apply our preconditioner, the original BLTT linear system is converted into a symmetric form by applying a time-reversing permutation transformation. Then, with our preconditioner, the preconditioned minimal residual method (MINRES) solver is employed to solve the symmetrized linear system. With properly chosen $\alpha$, the eigenvalues of the preconditioned matrix are proven to be clustered around $\pm1$ without any significant outliers. With the clustered spectrum, we show that the preconditioned MINRES solver for the preconditioned system has a convergence rate independent of system size. To the best of our knowledge, this is the first preconditioned MINRES method with size-independent convergence rate for the dense BLTT system. The efficacy of the proposed preconditioner is corroborated by our numerical experiments, which reveal that it attains optimal convergence.

We propose a numerically efficient method for evaluating the random-coding union bound with parameter $s$ on the error probability achievable in the finite-blocklength regime by a pilot-assisted transmission scheme employing Gaussian codebooks and operating over a memoryless block-fading channel. Our method relies on the saddlepoint approximation, which, differently from previous results reported for similar scenarios, is performed with respect to the number of fading blocks (a.k.a. diversity branches) spanned by each codeword, instead of the number of channel uses per block. This different approach avoids a costly numerical averaging of the error probability over the realizations of the fading process and of its pilot-based estimate at the receiver and results in a significant reduction of the number of channel realizations required to estimate the error probability accurately. Our numerical experiments for both single-antenna communication links and massive multiple-input multiple-output (MIMO) networks show that, when two or more diversity branches are available, the error probability can be estimated accurately with the saddlepoint approximation with respect to the number of fading blocks using a numerical method that requires about two orders of magnitude fewer Monte-Carlo samples than with the saddlepoint approximation with respect to the number of channel uses per block.

Deep neural operators (DNOs) have been utilized to approximate nonlinear mappings between function spaces. However, DNOs face the challenge of increased dimensionality and computational cost associated with unaligned observation data. In this study, we propose a hybrid Decoder-DeepONet operator regression framework to handle unaligned data effectively. Additionally, we introduce a Multi-Decoder-DeepONet, which utilizes an average field of training data as input augmentation. The consistencies of the frameworks with the operator approximation theory are provided, on the basis of the universal approximation theorem. Two numerical experiments, Darcy problem and flow-field around an airfoil, are conducted to validate the efficiency and accuracy of the proposed methods. Results illustrate the advantages of Decoder-DeepONet and Multi-Decoder-DeepONet in handling unaligned observation data and showcase their potentials in improving prediction accuracy.

A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain, especially when dealing with complex physical problems represented by partial differential equations (PDEs). This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications where accurate predictions in unexplored regions are crucial. We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures based on systems of ordinary differential equations, referred to as neural oscillators. Through effectively capturing long-time dependencies and mitigating the exploding and vanishing gradient problem, neural oscillators foster improved generalization in PIML tasks. Extensive experimentation involving time-dependent nonlinear PDEs and biharmonic beam equations demonstrates the efficacy of the proposed approach. Incorporating neural oscillators outperforms existing state-of-the-art methods on benchmark problems across various metrics. Consequently, the proposed method improves the generalization capabilities of PIML, providing accurate solutions for extrapolation and prediction beyond the training data.

We show that the VC-dimension of a graph can be computed in time $n^{\log d+1} d^{O(d)}$, where $d$ is the degeneracy of the input graph. The core idea of our algorithm is a data structure to efficiently query the number of vertices that see a specific subset of vertices inside of a (small) query set. The construction of this data structure takes time $O(d2^dn)$, afterwards queries can be computed efficiently using fast M\"obius inversion. This data structure turns out to be useful for a range of tasks, especially for finding bipartite patterns in degenerate graphs, and we outline an efficient algorithms for counting the number of times specific patterns occur in a graph. The largest factor in the running time of this algorithm is $O(n^c)$, where $c$ is a parameter of the pattern we call its left covering number. Concrete applications of this algorithm include counting the number of (non-induced) bicliques in linear time, the number of co-matchings in quadratic time, as well as a constant-factor approximation of the ladder index in linear time. Finally, we supplement our theoretical results with several implementations and run experiments on more than 200 real-world datasets -- the largest of which has 8 million edges -- where we obtain interesting insights into the VC-dimension of real-world networks.

Interpreting a seemingly-simple function word like "or", "behind", or "more" can require logical, numerical, and relational reasoning. How are such words learned by children? Prior acquisition theories have often relied on positing a foundation of innate knowledge. Yet recent neural-network based visual question answering models apparently can learn to use function words as part of answering questions about complex visual scenes. In this paper, we study what these models learn about function words, in the hope of better understanding how the meanings of these words can be learnt by both models and children. We show that recurrent models trained on visually grounded language learn gradient semantics for function words requiring spacial and numerical reasoning. Furthermore, we find that these models can learn the meanings of logical connectives "and" and "or" without any prior knowledge of logical reasoning, as well as early evidence that they can develop the ability to reason about alternative expressions when interpreting language. Finally, we show that word learning difficulty is dependent on frequency in models' input. Our findings offer evidence that it is possible to learn the meanings of function words in visually grounded context by using non-symbolic general statistical learning algorithms, without any prior knowledge of linguistic meaning.

Smooth Csisz\'ar $f$-divergences can be expressed as integrals over so-called hockey stick divergences. This motivates a natural quantum generalization in terms of quantum Hockey stick divergences, which we explore here. Using this recipe, the Kullback-Leibler divergence generalises to the Umegaki relative entropy, in the integral form recently found by Frenkel. We find that the R\'enyi divergences defined via our new quantum $f$-divergences are not additive in general, but that their regularisations surprisingly yield the Petz R\'enyi divergence for $\alpha < 1$ and the sandwiched R\'enyi divergence for $\alpha > 1$, unifying these two important families of quantum R\'enyi divergences. Moreover, we find that the contraction coefficients for the new quantum $f$ divergences collapse for all $f$ that are operator convex, mimicking the classical behaviour and resolving some long-standing conjectures by Lesniewski and Ruskai. We derive various inequalities, including new reverse Pinsker inequalites with applications in differential privacy and also explore various other applications of the new divergences.

Several methods in survival analysis are based on the proportional hazards assumption. However, this assumption is very restrictive and often not justifiable in practice. Therefore, effect estimands that do not rely on the proportional hazards assumption are highly desirable in practical applications. One popular example for this is the restricted mean survival time (RMST). It is defined as the area under the survival curve up to a prespecified time point and, thus, summarizes the survival curve into a meaningful estimand. For two-sample comparisons based on the RMST, previous research found the inflation of the type I error of the asymptotic test for small samples and, therefore, a two-sample permutation test has already been developed. The first goal of the present paper is to further extend the permutation test for general factorial designs and general contrast hypotheses by considering a Wald-type test statistic and its asymptotic behavior. Additionally, a groupwise bootstrap approach is considered. Moreover, when a global test detects a significant difference by comparing the RMSTs of more than two groups, it is of interest which specific RMST differences cause the result. However, global tests do not provide this information. Therefore, multiple tests for the RMST are developed in a second step to infer several null hypotheses simultaneously. Hereby, the asymptotically exact dependence structure between the local test statistics is incorporated to gain more power. Finally, the small sample performance of the proposed global and multiple testing procedures is analyzed in simulations and illustrated in a real data example.

In this paper, we introduce a novel numerical approach for approximating the SIR model in epidemiology. Our method enhances the existing linearization procedure by incorporating a suitable relaxation term to tackle the transcendental equation of nonlinear type. Developed within the continuous framework, our relaxation method is explicit and easy to implement, relying on a sequence of linear differential equations. This approach yields accurate approximations in both discrete and analytical forms. Through rigorous analysis, we prove that, with an appropriate choice of the relaxation parameter, our numerical scheme is non-negativity-preserving and globally strongly convergent towards the true solution. These theoretical findings have not received sufficient attention in various existing SIR solvers. We also extend the applicability of our relaxation method to handle some variations of the traditional SIR model. Finally, we present numerical examples using simulated data to demonstrate the effectiveness of our proposed method.

Long-span bridges are subjected to a multitude of dynamic excitations during their lifespan. To account for their effects on the structural system, several load models are used during design to simulate the conditions the structure is likely to experience. These models are based on different simplifying assumptions and are generally guided by parameters that are stochastically identified from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic physics-informed machine-learning framework based on Gaussian process regression for reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model can work with incomplete and contaminated data and offers a natural regularization approach to account for noise in the measurement system. An application of the developed framework is given by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated numerically based on the quasi-steady model, and the underlying forces are reconstructed using sparse and noisy measurements. Results indicate a good agreement between the applied and the predicted dynamic load and can be extended to calculate global responses and the resulting internal forces. Uses of the developed framework include validation of design models and assumptions, as well as prognosis of responses to assist in damage detection and structural health monitoring.

北京阿比特科技有限公司