Smooth Csisz\'ar $f$-divergences can be expressed as integrals over so-called hockey stick divergences. This motivates a natural quantum generalization in terms of quantum Hockey stick divergences, which we explore here. Using this recipe, the Kullback-Leibler divergence generalises to the Umegaki relative entropy, in the integral form recently found by Frenkel. We find that the R\'enyi divergences defined via our new quantum $f$-divergences are not additive in general, but that their regularisations surprisingly yield the Petz R\'enyi divergence for $\alpha < 1$ and the sandwiched R\'enyi divergence for $\alpha > 1$, unifying these two important families of quantum R\'enyi divergences. Moreover, we find that the contraction coefficients for the new quantum $f$ divergences collapse for all $f$ that are operator convex, mimicking the classical behaviour and resolving some long-standing conjectures by Lesniewski and Ruskai. We derive various inequalities, including new reverse Pinsker inequalites with applications in differential privacy and also explore various other applications of the new divergences.
Subspace clustering methods which embrace a self-expressive model that represents each data point as a linear combination of other data points in the dataset provide powerful unsupervised learning techniques. However, when dealing with large datasets, representation of each data point by referring to all data points via a dictionary suffers from high computational complexity. To alleviate this issue, we introduce a parallelizable multi-subset based self-expressive model (PMS) which represents each data point by combining multiple subsets, with each consisting of only a small proportion of the samples. The adoption of PMS in subspace clustering (PMSSC) leads to computational advantages because the optimization problems decomposed over each subset are small, and can be solved efficiently in parallel. Furthermore, PMSSC is able to combine multiple self-expressive coefficient vectors obtained from subsets, which contributes to an improvement in self-expressiveness. Extensive experiments on synthetic and real-world datasets show the efficiency and effectiveness of our approach in comparison to other methods.
One major challenge of disentanglement learning with variational autoencoders is the trade-off between disentanglement and reconstruction fidelity. Previous studies, which increase the information bottleneck during training, tend to lose the constraint of disentanglement, leading to the information diffusion problem. In this paper, we present a novel framework for disentangled representation learning, DeVAE, which utilizes hierarchical latent spaces with decreasing information bottlenecks across these spaces. The key innovation of our approach lies in connecting the hierarchical latent spaces through disentanglement-invariant transformations, allowing the sharing of disentanglement properties among spaces while maintaining an acceptable level of reconstruction performance. We demonstrate the effectiveness of DeVAE in achieving a balance between disentanglement and reconstruction through a series of experiments and ablation studies on dSprites and Shapes3D datasets. Code is available at //github.com/erow/disentanglement_lib/tree/pytorch#devae.
Given a sample of size $N$, it is often useful to select a subsample of smaller size $n<N$ to be used for statistical estimation or learning. Such a data selection step is useful to reduce the requirements of data labeling and the computational complexity of learning. We assume to be given $N$ unlabeled samples $\{{\boldsymbol x}_i\}_{i\le N}$, and to be given access to a `surrogate model' that can predict labels $y_i$ better than random guessing. Our goal is to select a subset of the samples, to be denoted by $\{{\boldsymbol x}_i\}_{i\in G}$, of size $|G|=n<N$. We then acquire labels for this set and we use them to train a model via regularized empirical risk minimization. By using a mixture of numerical experiments on real and synthetic data, and mathematical derivations under low- and high- dimensional asymptotics, we show that: $(i)$~Data selection can be very effective, in particular beating training on the full sample in some cases; $(ii)$~Certain popular choices in data selection methods (e.g. unbiased reweighted subsampling, or influence function-based subsampling) can be substantially suboptimal.
Let $G$ be an undirected graph, and $s,t$ distinguished vertices of $G$. A minimal $s,t$-separator is an inclusion-wise minimal vertex-set whose removal places $s$ and $t$ in distinct connected components. We present an algorithm for listing the minimal $s,t$-separators of a graph, whose cardinality is at most $k$, with FPT-delay, where the parameter depends only on $k$. This problem finds applications in various algorithms parameterized by treewidth, which include query evaluation in relational databases, probabilistic inference, and many more. We also present a simple algorithm that enumerates all of the (not necessarily minimal) $s,t$-separators of a graph in ranked order by size.
Recently, Sato et al. proposed an public verifiable blind quantum computation (BQC) protocol by inserting a third-party arbiter. However, it is not true public verifiable in a sense, because the arbiter is determined in advance and participates in the whole process. In this paper, a public verifiable protocol for measurement-only BQC is proposed. The fidelity between arbitrary states and the graph states of 2-colorable graphs is estimated by measuring the entanglement witnesses of the graph states,so as to verify the correctness of the prepared graph states. Compared with the previous protocol, our protocol is public verifiable in the true sense by allowing other random clients to execute the public verification. It also has greater advantages in the efficiency, where the number of local measurements is O(n^3*log {n}) and graph states' copies is O(n^2*log{n}).
We prove that $1-o(1)$ fraction of all $k$-SAT functions on $n$ Boolean variables are unate (i.e., monotone after first negating some variables), for any fixed positive integer $k$ and as $n \to \infty$. This resolves a conjecture by Bollob\'as, Brightwell, and Leader from 2003.
Web-based test automation heavily relies on accurately finding web elements. Traditional methods compare attributes but don't grasp the context and meaning of elements and words. The emergence of Large Language Models (LLMs) like GPT-4, which can show human-like reasoning abilities on some tasks, offers new opportunities for software engineering and web element localization. This paper introduces and evaluates VON Similo LLM, an enhanced web element localization approach. Using an LLM, it selects the most likely web element from the top-ranked ones identified by the existing VON Similo method, ideally aiming to get closer to human-like selection accuracy. An experimental study was conducted using 804 web element pairs from 48 real-world web applications. We measured the number of correctly identified elements as well as the execution times, comparing the effectiveness and efficiency of VON Similo LLM against the baseline algorithm. In addition, motivations from the LLM were recorded and analyzed for all instances where the original approach failed to find the right web element. VON Similo LLM demonstrated improved performance, reducing failed localizations from 70 to 39 (out of 804), a 44 percent reduction. Despite its slower execution time and additional costs of using the GPT-4 model, the LLMs human-like reasoning showed promise in enhancing web element localization. LLM technology can enhance web element identification in GUI test automation, reducing false positives and potentially lowering maintenance costs. However, further research is necessary to fully understand LLMs capabilities, limitations, and practical use in GUI testing.
We propose a new method to compare survival data based on Higher Criticism (HC) of P-values obtained from many exact hypergeometric tests. The method can accommodate censorship and is sensitive to moderate differences in some unknown and relatively few time intervals, attaining much better power against such differences than the log-rank test and other tests that are popular under non-proportional hazard alternatives. We demonstrate the usefulness of the HC-based test in detecting rare differences compared to existing tests using simulated data and using actual gene expression data. Additionally, we analyze the asymptotic power of our method under a piece-wise homogeneous exponential decay model with rare and weak departures, describing two groups experiencing failure rates that are usually identical over time except in a few unknown instances in which the second group's failure rate is higher. Under an asymptotic calibration of the model's parameters, the HC-based test's power experiences a phase transition across the plane involving the rarity and intensity parameters that mirrors the phase transition in a two-sample rare and weak normal means setting. In particular, the phase transition curve of our test indicates a larger region in which it is fully powered than the corresponding region of the log-rank test. %The latter attains a phase transition curve that is analogous to a test based on Fisher's combination statistic of the hypergeometric P-values. %To our knowledge, this is the first analysis of a rare and weak signal detection model that involves individually dependent effects in a non-Gaussian setting.
We define the notion of $k$-safe infinitary series over idempotent ordered totally generalized product $\omega $-valuation monoids that satisfy specific properties. For each element $k$ of the underlying structure (different from the neutral elements of the additive, and the multiplicative operation) we determine two syntactic fragments of the weighted $LTL$ with the property that the semantics of the formulas in these fragments are $k$ -safe infinitary series. For specific idempotent ordered totally generalized product $\omega $-valuation monoids we provide algorithms that given a weighted B\"{u}chi automaton and a weighted $LTL$ formula in these fragments, decide whether the behavior of the automaton coincides with the semantics of the formula.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.