Web-based test automation heavily relies on accurately finding web elements. Traditional methods compare attributes but don't grasp the context and meaning of elements and words. The emergence of Large Language Models (LLMs) like GPT-4, which can show human-like reasoning abilities on some tasks, offers new opportunities for software engineering and web element localization. This paper introduces and evaluates VON Similo LLM, an enhanced web element localization approach. Using an LLM, it selects the most likely web element from the top-ranked ones identified by the existing VON Similo method, ideally aiming to get closer to human-like selection accuracy. An experimental study was conducted using 804 web element pairs from 48 real-world web applications. We measured the number of correctly identified elements as well as the execution times, comparing the effectiveness and efficiency of VON Similo LLM against the baseline algorithm. In addition, motivations from the LLM were recorded and analyzed for all instances where the original approach failed to find the right web element. VON Similo LLM demonstrated improved performance, reducing failed localizations from 70 to 39 (out of 804), a 44 percent reduction. Despite its slower execution time and additional costs of using the GPT-4 model, the LLMs human-like reasoning showed promise in enhancing web element localization. LLM technology can enhance web element identification in GUI test automation, reducing false positives and potentially lowering maintenance costs. However, further research is necessary to fully understand LLMs capabilities, limitations, and practical use in GUI testing.
This paper proposes a novel slacks-based interval DEA approach that computes interval targets, slacks, and crisp inefficiency scores. It uses interval arithmetic and requires solving a mixed-integer linear program. The corresponding super-efficiency formulation to discriminate among the efficient units is also presented. We also provide a case study of its application to sustainable tourism in the Mediterranean region, assessing the sustainable tourism efficiency of twelve Mediterranean regions to validate the proposed approach. The inputs and outputs cover the three sustainability dimensions and include GHG emissions as an undesirable output. Three regions were found inefficient, and the corresponding inputs and output improvements were computed. A total rank of the regions was also obtained using the super-efficiency model.
A central task in knowledge compilation is to compile a CNF-SAT instance into a succinct representation format that allows efficient operations such as testing satisfiability, counting, or enumerating all solutions. Useful representation formats studied in this area range from ordered binary decision diagrams (OBDDs) to circuits in decomposable negation normal form (DNNFs). While it is known that there exist CNF formulas that require exponential size representations, the situation is less well studied for other types of constraints than Boolean disjunctive clauses. The constraint satisfaction problem (CSP) is a powerful framework that generalizes CNF-SAT by allowing arbitrary sets of constraints over any finite domain. The main goal of our work is to understand for which type of constraints (also called the constraint language) it is possible to efficiently compute representations of polynomial size. We answer this question completely and prove two tight characterizations of efficiently compilable constraint languages, depending on whether target format is structured. We first identify the combinatorial property of ``strong blockwise decomposability'' and show that if a constraint language has this property, we can compute DNNF representations of linear size. For all other constraint languages we construct families of CSP-instances that provably require DNNFs of exponential size. For a subclass of ``strong uniformly blockwise decomposable'' constraint languages we obtain a similar dichotomy for structured DNNFs. In fact, strong (uniform) blockwise decomposability even allows efficient compilation into multi-valued analogs of OBDDs and FBDDs, respectively. Thus, we get complete characterizations for all knowledge compilation classes between O(B)DDs and DNNFs.
How do score-based generative models (SBMs) learn the data distribution supported on a low-dimensional manifold? We investigate the score model of a trained SBM through its linear approximations and subspaces spanned by local feature vectors. During diffusion as the noise decreases, the local dimensionality increases and becomes more varied between different sample sequences. Importantly, we find that the learned vector field mixes samples by a non-conservative field within the manifold, although it denoises with normal projections as if there is an energy function in off-manifold directions. At each noise level, the subspace spanned by the local features overlap with an effective density function. These observations suggest that SBMs can flexibly mix samples with the learned score field while carefully maintaining a manifold-like structure of the data distribution.
In Computational Fluid Dynamics (CFD), coarse mesh simulations offer computational efficiency but often lack precision. Applying conventional super-resolution to these simulations poses a significant challenge due to the fundamental contrast between downsampling high-resolution images and authentically emulating low-resolution physics. The former method conserves more of the underlying physics, surpassing the usual constraints of real-world scenarios. We propose a novel definition of super-resolution tailored for PDE-based problems. Instead of simply downsampling from a high-resolution dataset, we use coarse-grid simulated data as our input and predict fine-grid simulated outcomes. Employing a physics-infused UNet upscaling method, we demonstrate its efficacy across various 2D-CFD problems such as discontinuity detection in Burger's equation, Methane combustion, and fouling in Industrial heat exchangers. Our method enables the generation of fine-mesh solutions bypassing traditional simulation, ensuring considerable computational saving and fidelity to the original ground truth outcomes. Through diverse boundary conditions during training, we further establish the robustness of our method, paving the way for its broad applications in engineering and scientific CFD solvers.
This work presents an abstract framework for the design, implementation, and analysis of the multiscale spectral generalized finite element method (MS-GFEM), a particular numerical multiscale method originally proposed in [I. Babuska and R. Lipton, Multiscale Model.\;\,Simul., 9 (2011), pp.~373--406]. MS-GFEM is a partition of unity method employing optimal local approximation spaces constructed from local spectral problems. We establish a general local approximation theory demonstrating exponential convergence with respect to local degrees of freedom under certain assumptions, with explicit dependence on key problem parameters. Our framework applies to a broad class of multiscale PDEs with $L^{\infty}$-coefficients in both continuous and discrete, finite element settings, including highly indefinite problems (convection-dominated diffusion, as well as the high-frequency Helmholtz, Maxwell and elastic wave equations with impedance boundary conditions), and higher-order problems. Notably, we prove a local convergence rate of $O(e^{-cn^{1/d}})$ for MS-GFEM for all these problems, improving upon the $O(e^{-cn^{1/(d+1)}})$ rate shown by Babuska and Lipton. Moreover, based on the abstract local approximation theory for MS-GFEM, we establish a unified framework for showing low-rank approximations to multiscale PDEs. This framework applies to the aforementioned problems, proving that the associated Green's functions admit an $O(|\log\epsilon|^{d})$-term separable approximation on well-separated domains with error $\epsilon>0$. Our analysis improves and generalizes the result in [M. Bebendorf and W. Hackbusch, Numerische Mathematik, 95 (2003), pp.~1-28] where an $O(|\log\epsilon|^{d+1})$-term separable approximation was proved for Poisson-type problems.
We present USLR, a computational framework for longitudinal registration of brain MRI scans to estimate nonlinear image trajectories that are smooth across time, unbiased to any timepoint, and robust to imaging artefacts. It operates on the Lie algebra parameterisation of spatial transforms (which is compatible with rigid transforms and stationary velocity fields for nonlinear deformation) and takes advantage of log-domain properties to solve the problem using Bayesian inference. USRL estimates rigid and nonlinear registrations that: (i) bring all timepoints to an unbiased subject-specific space; and (i) compute a smooth trajectory across the imaging time-series. We capitalise on learning-based registration algorithms and closed-form expressions for fast inference. A use-case Alzheimer's disease study is used to showcase the benefits of the pipeline in multiple fronts, such as time-consistent image segmentation to reduce intra-subject variability, subject-specific prediction or population analysis using tensor-based morphometry. We demonstrate that such approach improves upon cross-sectional methods in identifying group differences, which can be helpful in detecting more subtle atrophy levels or in reducing sample sizes in clinical trials. The code is publicly available in //github.com/acasamitjana/uslr
Quantum supervised learning, utilizing variational circuits, stands out as a promising technology for NISQ devices due to its efficiency in hardware resource utilization during the creation of quantum feature maps and the implementation of hardware-efficient ansatz with trainable parameters. Despite these advantages, the training of quantum models encounters challenges, notably the barren plateau phenomenon, leading to stagnation in learning during optimization iterations. This study proposes an innovative approach: an evolutionary-enhanced ansatz-free supervised learning model. In contrast to parametrized circuits, our model employs circuits with variable topology that evolves through an elitist method, mitigating the barren plateau issue. Additionally, we introduce a novel concept, the superposition of multi-hot encodings, facilitating the treatment of multi-classification problems. Our framework successfully avoids barren plateaus, resulting in enhanced model accuracy. Comparative analysis with variational quantum classifiers from the technology's state-of-the-art reveal a substantial improvement in training efficiency and precision. Furthermore, we conduct tests on a challenging dataset class, traditionally problematic for conventional kernel machines, demonstrating a potential alternative path for achieving quantum advantage in supervised learning for NISQ era.
In spatial blind source separation the observed multivariate random fields are assumed to be mixtures of latent spatially dependent random fields. The objective is to recover latent random fields by estimating the unmixing transformation. Currently, the algorithms for spatial blind source separation can only estimate linear unmixing transformations. Nonlinear blind source separation methods for spatial data are scarce. In this paper we extend an identifiable variational autoencoder that can estimate nonlinear unmixing transformations to spatially dependent data and demonstrate its performance for both stationary and nonstationary spatial data using simulations. In addition, we introduce scaled mean absolute Shapley additive explanations for interpreting the latent components through nonlinear mixing transformation. The spatial identifiable variational autoencoder is applied to a geochemical dataset to find the latent random fields, which are then interpreted by using the scaled mean absolute Shapley additive explanations.
Sketch-guided image editing aims to achieve local fine-tuning of the image based on the sketch information provided by the user, while maintaining the original status of the unedited areas. Due to the high cost of acquiring human sketches, previous works mostly relied on edge maps as a substitute for sketches, but sketches possess more rich structural information. In this paper, we propose a sketch generation scheme that can preserve the main contours of an image and closely adhere to the actual sketch style drawn by the user. Simultaneously, current image editing methods often face challenges such as image distortion, training cost, and loss of fine details in the sketch. To address these limitations, We propose a conditional diffusion model (SketchFFusion) based on the sketch structure vector. We evaluate the generative performance of our model and demonstrate that it outperforms existing methods.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.