亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We show that the VC-dimension of a graph can be computed in time $n^{\log d+1} d^{O(d)}$, where $d$ is the degeneracy of the input graph. The core idea of our algorithm is a data structure to efficiently query the number of vertices that see a specific subset of vertices inside of a (small) query set. The construction of this data structure takes time $O(d2^dn)$, afterwards queries can be computed efficiently using fast M\"obius inversion. This data structure turns out to be useful for a range of tasks, especially for finding bipartite patterns in degenerate graphs, and we outline an efficient algorithms for counting the number of times specific patterns occur in a graph. The largest factor in the running time of this algorithm is $O(n^c)$, where $c$ is a parameter of the pattern we call its left covering number. Concrete applications of this algorithm include counting the number of (non-induced) bicliques in linear time, the number of co-matchings in quadratic time, as well as a constant-factor approximation of the ladder index in linear time. Finally, we supplement our theoretical results with several implementations and run experiments on more than 200 real-world datasets -- the largest of which has 8 million edges -- where we obtain interesting insights into the VC-dimension of real-world networks.

相關內容

We expound on some known lower bounds of the quadratic Wasserstein distance between random vectors in $\mathbb{R}^n$ with an emphasis on affine transformations that have been used in manifold learning of data in Wasserstein space. In particular, we give concrete lower bounds for rotated copies of random vectors in $\mathbb{R}^2$ with uncorrelated components by computing the Bures metric between the covariance matrices. We also derive upper bounds for compositions of affine maps which yield a fruitful variety of diffeomorphisms applied to an initial data measure. We apply these bounds to various distributions including those lying on a 1-dimensional manifold in $\mathbb{R}^2$ and illustrate the quality of the bounds. Finally, we give a framework for mimicking handwritten digit or alphabet datasets that can be applied in a manifold learning framework.

We consider Gibbs distributions, which are families of probability distributions over a discrete space $\Omega$ with probability mass function of the form $\mu^\Omega_\beta(\omega) \propto e^{\beta H(\omega)}$ for $\beta$ in an interval $[\beta_{\min}, \beta_{\max}]$ and $H( \omega ) \in \{0 \} \cup [1, n]$. The partition function is the normalization factor $Z(\beta)=\sum_{\omega \in\Omega}e^{\beta H(\omega)}$. Two important parameters of these distributions are the log partition ratio $q = \log \tfrac{Z(\beta_{\max})}{Z(\beta_{\min})}$ and the counts $c_x = |H^{-1}(x)|$. These are correlated with system parameters in a number of physical applications and sampling algorithms. Our first main result is to estimate the counts $c_x$ using roughly $\tilde O( \frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and $\tilde O( \frac{n^2}{\varepsilon^2} )$ samples for integer-valued distributions (ignoring some second-order terms and parameters), and we show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs, independent sets, and perfect matchings. As a key subroutine, we also develop algorithms to compute the partition function $Z$ using $\tilde O(\frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and using $\tilde O(\frac{n^2}{\varepsilon^2})$ samples for integer-valued distributions.

Markov chain Monte Carlo (MCMC) algorithms are based on the construction of a Markov Chain with transition probabilities $P_\mu(x,\cdot)$, where $\mu$ indicates an invariant distribution of interest. In this work, we look at these transition probabilities as functions of their invariant distributions, and we develop a notion of derivative in the invariant distribution of a MCMC kernel. We build around this concept a set of tools that we refer to as Markov Chain Monte Carlo Calculus. This allows us to compare Markov chains with different invariant distributions within a suitable class via what we refer to as mean value inequalities. We explain how MCMC Calculus provides a natural framework to study algorithms using an approximation of an invariant distribution, also illustrating how it suggests practical guidelines for MCMC algorithms efficiency. We conclude this work by showing how the tools developed can be applied to prove convergence of interacting and sequential MCMC algorithms, which arise in the context of particle filtering.

Given a set of $K$ probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.

We develop sampling algorithms to fit Bayesian hierarchical models, the computational complexity of which scales linearly with the number of observations and the number of parameters in the model. We focus on crossed random effect and nested multilevel models, which are used ubiquitously in applied sciences. The posterior dependence in both classes is sparse: in crossed random effects models it resembles a random graph, whereas in nested multilevel models it is tree-structured. For each class we identify a framework for scalable computation, building on previous work. Methods for crossed models are based on extensions of appropriately designed collapsed Gibbs samplers, where we introduce the idea of local centering; while methods for nested models are based on sparse linear algebra and data augmentation. We provide a theoretical analysis of the proposed algorithms in some simplified settings, including a comparison with previously proposed methodologies and an average-case analysis based on random graph theory. Numerical experiments, including two challenging real data analyses on predicting electoral results and real estate prices, compare with off-the-shelf Hamiltonian Monte Carlo, displaying drastic improvement in performance.

The property that the velocity $\boldsymbol{u}$ belongs to $L^\infty(0,T;L^2(\Omega)^d)$ is an essential requirement in the definition of energy solutions of models for incompressible fluids. It is, therefore, highly desirable that the solutions produced by discretisation methods are uniformly stable in the $L^\infty(0,T;L^2(\Omega)^d)$-norm. In this work, we establish that this is indeed the case for Discontinuous Galerkin (DG) discretisations (in time and space) of non-Newtonian models with $p$-structure, assuming that $p\geq \frac{3d+2}{d+2}$; the time discretisation is equivalent to the RadauIIA Implicit Runge-Kutta method. We also prove (weak) convergence of the numerical scheme to the weak solution of the system; this type of convergence result for schemes based on quadrature seems to be new. As an auxiliary result, we also derive Gagliardo-Nirenberg-type inequalities on DG spaces, which might be of independent interest.

The greedy and nearest-neighbor TSP heuristics can both have $\log n$ approximation factors from optimal in worst case, even just for $n$ points in Euclidean space. In this note, we show that this approximation factor is only realized when the optimal tour is unusually short. In particular, for points from any fixed $d$-Ahlfor's regular metric space (which includes any $d$-manifold like the $d$-cube $[0,1]^d$ in the case $d$ is an integer but also fractals of dimension $d$ when $d$ is real-valued), our results imply that the greedy and nearest-neighbor heuristics have \emph{additive} errors from optimal on the order of the \emph{optimal} tour length through \emph{random} points in the same space, for $d>1$.

Given a sample of size $N$, it is often useful to select a subsample of smaller size $n<N$ to be used for statistical estimation or learning. Such a data selection step is useful to reduce the requirements of data labeling and the computational complexity of learning. We assume to be given $N$ unlabeled samples $\{{\boldsymbol x}_i\}_{i\le N}$, and to be given access to a `surrogate model' that can predict labels $y_i$ better than random guessing. Our goal is to select a subset of the samples, to be denoted by $\{{\boldsymbol x}_i\}_{i\in G}$, of size $|G|=n<N$. We then acquire labels for this set and we use them to train a model via regularized empirical risk minimization. By using a mixture of numerical experiments on real and synthetic data, and mathematical derivations under low- and high- dimensional asymptotics, we show that: $(i)$~Data selection can be very effective, in particular beating training on the full sample in some cases; $(ii)$~Certain popular choices in data selection methods (e.g. unbiased reweighted subsampling, or influence function-based subsampling) can be substantially suboptimal.

We present a new algorithm for amortized inference in sparse probabilistic graphical models (PGMs), which we call $\Delta$-amortized inference ($\Delta$-AI). Our approach is based on the observation that when the sampling of variables in a PGM is seen as a sequence of actions taken by an agent, sparsity of the PGM enables local credit assignment in the agent's policy learning objective. This yields a local constraint that can be turned into a local loss in the style of generative flow networks (GFlowNets) that enables off-policy training but avoids the need to instantiate all the random variables for each parameter update, thus speeding up training considerably. The $\Delta$-AI objective matches the conditional distribution of a variable given its Markov blanket in a tractable learned sampler, which has the structure of a Bayesian network, with the same conditional distribution under the target PGM. As such, the trained sampler recovers marginals and conditional distributions of interest and enables inference of partial subsets of variables. We illustrate $\Delta$-AI's effectiveness for sampling from synthetic PGMs and training latent variable models with sparse factor structure.

In the context of the Cobb-Douglas productivity model we consider the $N \times N$ input-output linkage matrix $W$ for a network of $N$ firms $f_1, f_2, \cdots, f_N$. The associated influence vector $v_w$ of $W$ is defined in terms of the Leontief inverse $L_W$ of $W$ as $v_W = \frac{\alpha}{N} L_W \vec{\mathbf{1}}$ where $L_W = (I - (1-\alpha) W')^{-1}$, $W'$ denotes the transpose of $W$ and $I$ is the identity matrix. Here $\vec{\mathbf{1}}$ is the $N \times 1$ vector whose entries are all one. The influence vector is a metric of the importance for the firms in the production network. Under the realistic assumption that the data to compute the influence vector is incomplete, we prove bounds on the worst-case error for the influence vector that are sharp up to a constant factor. We also consider the situation where the missing data is binomially distributed and contextualize the bound on the influence vector accordingly. We also investigate how far off the influence vector can be when we only have data on nodes and connections that are within distance $k$ of some source node. A comparison of our results is juxtaposed against PageRank analogues. We close with a discussion on a possible extension beyond Cobb-Douglas to the Constant Elasticity of Substitution model, as well as the possibility of considering other probability distributions for missing data.

北京阿比特科技有限公司