亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we consider the problem of temporally aligning the video and texts from instructional videos, specifically, given a long-term video, and associated text sentences, our goal is to determine their corresponding timestamps in the video. To this end, we establish a simple, yet strong model that adopts a Transformer-based architecture with all texts as queries, iteratively attending to the visual features, to infer the optimal timestamp. We conduct thorough experiments to investigate: (i) the effect of upgrading ASR systems to reduce errors from speech recognition, (ii) the effect of various visual-textual backbones, ranging from CLIP to S3D, to the more recent InternVideo, (iii) the effect of transforming noisy ASR transcripts into descriptive steps by prompting a large language model (LLM), to summarize the core activities within the ASR transcript as a new training dataset. As a result, our proposed simple model demonstrates superior performance on both narration alignment and procedural step grounding tasks, surpassing existing state-of-the-art methods by a significant margin on three public benchmarks, namely, 9.3% on HT-Step, 3.4% on HTM-Align and 4.7% on CrossTask. We believe the proposed model and dataset with descriptive steps can be treated as a strong baseline for future research in temporal video-text alignment. All codes, models, and the resulting dataset will be publicly released to the research community.

相關內容

語音識別是計算機科學和計算語言學的一個跨學科子領域,它發展了一些方法和技術,使計算機可以將口語識別和翻譯成文本。 它也被稱為自動語音識別(ASR),計算機語音識別或語音轉文本(STT)。它整合了計算機科學,語言學和計算機工程領域的知識和研究。

In this paper, we evaluate the capability of transformer-based language models in making inferences over uncertain text that includes uncertain rules of reasoning. We cover both Pre-trained Language Models (PLMs) and generative Large Language Models (LLMs). Our evaluation results show that both generations of language models struggle with reasoning over uncertain text. We propose a novel end-to-end fine-tuning approach, Probabilistic Constraint Training (PCT), that utilizes probabilistic logical rules as constraints in the fine-tuning phase without relying on these rules in the inference stage. To assess the effectiveness of PCT, we utilize the related corpora and, additionally, create a new and more challenging benchmark that, unlike the previous ones, uses instance-specific rules. Our study demonstrates that PCT improves the transformer-based language model's intrinsic reasoning and makes their probabilistic logical reasoning process more explicit and explainable. Furthermore, PCT equips these models to effectively handle novel situations, including higher reasoning depth, new domains, and complex probabilistic structures.

The strong temporal consistency of surveillance video enables compelling compression performance with traditional methods, but downstream vision applications operate on decoded image frames with a high data rate. Since it is not straightforward for applications to extract information on temporal redundancy from the compressed video representations, we propose a novel system which conveys temporal redundancy within a sparse decompressed representation. We leverage a video representation framework called ADDER to transcode framed videos to sparse, asynchronous intensity samples. We introduce mechanisms for content adaptation, lossy compression, and asynchronous forms of classical vision algorithms. We evaluate our system on the VIRAT surveillance video dataset, and we show a median 43.7% speed improvement in FAST feature detection compared to OpenCV. We run the same algorithm as OpenCV, but only process pixels that receive new asynchronous events, rather than process every pixel in an image frame. Our work paves the way for upcoming neuromorphic sensors and is amenable to future applications with spiking neural networks.

In this paper, we completely solve the reversibility of one-dimensional finite cellular automata (FCA). This means that we will have an efficient method to determine the reversibility of any FCA with all numbers (n) of cells. The complexity of this algorithm is independent of n. We perform calculations on two new kinds of graphs and discover that the reversibility of any FCA exhibits periodicity as n increases. We successfully provide a method to compute the reversibility sequence that encompasses the reversibility of FCA with any number of cells. Additionally, the calculations in this paper are applicable to FCA with various types of boundaries.

In this paper, we present a distribution-dependent PAC-Chernoff bound that is perfectly tight for interpolators even under overparametrized model classes. This bound relies on basic principles of Large Deviation Theory and naturally provides a characterization of the smoothness of a model described as a simple real-valued function. Based on this distribution-dependent bound and the novel definition of smoothness, we propose an unifying theoretical explanation of why some interpolators generalize remarkably well while others not. And why a wide range of modern learning techniques (i.e., $\ell_2$-norm, distance-from-initialization, input-gradient and variance regularization together with data augmentation, invariant architectures, and overparameterization) are able to find them. The emergent conclusion is that all these methods provide complimentary procedures that bias the optimizer to smoother interpolators, which, according to this theoretical analysis, are the ones with better generalization error. One of the main insights of this study is that distribution-dependent bounds serve as a powerful tool better understand the complex dynamics behind the generalization capabilities of highly-overparameterized interpolators.

In this paper, we focus on a realistic yet challenging task, Single Domain Generalization Object Detection (S-DGOD), where only one source domain's data can be used for training object detectors, but have to generalize multiple distinct target domains. In S-DGOD, both high-capacity fitting and generalization abilities are needed due to the task's complexity. Differentiable Neural Architecture Search (NAS) is known for its high capacity for complex data fitting and we propose to leverage Differentiable NAS to solve S-DGOD. However, it may confront severe over-fitting issues due to the feature imbalance phenomenon, where parameters optimized by gradient descent are biased to learn from the easy-to-learn features, which are usually non-causal and spuriously correlated to ground truth labels, such as the features of background in object detection data. Consequently, this leads to serious performance degradation, especially in generalizing to unseen target domains with huge domain gaps between the source domain and target domains. To address this issue, we propose the Generalizable loss (G-loss), which is an OoD-aware objective, preventing NAS from over-fitting by using gradient descent to optimize parameters not only on a subset of easy-to-learn features but also the remaining predictive features for generalization, and the overall framework is named G-NAS. Experimental results on the S-DGOD urban-scene datasets demonstrate that the proposed G-NAS achieves SOTA performance compared to baseline methods. Codes are available at //github.com/wufan-cse/G-NAS.

In this paper, we introduce two novel methods to design outer polar codes for two previously proposed concatenated polar code architectures: augmented polar codes and local-global polar codes. These methods include a stopping set (SS) construction and a nonstationary density evolution (NDE) construction. Simulation results demonstrate the advantage of these methods over previously proposed constructions based on density evolution (DE) and LLR evolution.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司