In this paper, we evaluate the capability of transformer-based language models in making inferences over uncertain text that includes uncertain rules of reasoning. We cover both Pre-trained Language Models (PLMs) and generative Large Language Models (LLMs). Our evaluation results show that both generations of language models struggle with reasoning over uncertain text. We propose a novel end-to-end fine-tuning approach, Probabilistic Constraint Training (PCT), that utilizes probabilistic logical rules as constraints in the fine-tuning phase without relying on these rules in the inference stage. To assess the effectiveness of PCT, we utilize the related corpora and, additionally, create a new and more challenging benchmark that, unlike the previous ones, uses instance-specific rules. Our study demonstrates that PCT improves the transformer-based language model's intrinsic reasoning and makes their probabilistic logical reasoning process more explicit and explainable. Furthermore, PCT equips these models to effectively handle novel situations, including higher reasoning depth, new domains, and complex probabilistic structures.
Lengthy evaluation times are common in many optimization problems such as direct policy search tasks, especially when they involve conducting evaluations in the physical world, e.g. in robotics applications. Often when evaluating solution over a fixed time period it becomes clear that the objective value will not increase with additional computation time (for example when a two wheeled robot continuously spins on the spot). In such cases, it makes sense to stop the evaluation early to save computation time. However, most approaches to stop the evaluation are problem specific and need to be specifically designed for the task at hand. Therefore, we propose an early stopping method for direct policy search. The proposed method only looks at the objective value at each time step and requires no problem specific knowledge. We test the introduced stopping criterion in five direct policy search environments drawn from games, robotics and classic control domains, and show that it can save up to 75% of the computation time. We also compare it with problem specific stopping criteria and show that it performs comparably, while being more generally applicable.
In this paper, we study the problem of global reward maximization with only partial distributed feedback. This problem is motivated by several real-world applications (e.g., cellular network configuration, dynamic pricing, and policy selection) where an action taken by a central entity influences a large population that contributes to the global reward. However, collecting such reward feedback from the entire population not only incurs a prohibitively high cost but often leads to privacy concerns. To tackle this problem, we consider differentially private distributed linear bandits, where only a subset of users from the population are selected (called clients) to participate in the learning process and the central server learns the global model from such partial feedback by iteratively aggregating these clients' local feedback in a differentially private fashion. We then propose a unified algorithmic learning framework, called differentially private distributed phased elimination (DP-DPE), which can be naturally integrated with popular differential privacy (DP) models (including central DP, local DP, and shuffle DP). Furthermore, we prove that DP-DPE achieves both sublinear regret and sublinear communication cost. Interestingly, DP-DPE also achieves privacy protection ``for free'' in the sense that the additional cost due to privacy guarantees is a lower-order additive term. In addition, as a by-product of our techniques, the same results of ``free" privacy can also be achieved for the standard differentially private linear bandits. Finally, we conduct simulations to corroborate our theoretical results and demonstrate the effectiveness of DP-DPE.
In this paper, we study the problem of multi-reward reinforcement learning to jointly optimize for multiple text qualities for natural language generation. We focus on the task of counselor reflection generation, where we optimize the generators to simultaneously improve the fluency, coherence, and reflection quality of generated counselor responses. We introduce two novel bandit methods, DynaOpt and C-DynaOpt, which rely on the broad strategy of combining rewards into a single value and optimizing them simultaneously. Specifically, we employ non-contextual and contextual multi-arm bandits to dynamically adjust multiple reward weights during training. Through automatic and manual evaluations, we show that our proposed techniques, DynaOpt and C-DynaOpt, outperform existing naive and bandit baselines, showcasing their potential for enhancing language models.
In this paper, we propose two novel approaches, which integrate long-content information into the factorized neural transducer (FNT) based architecture in both non-streaming (referred to as LongFNT ) and streaming (referred to as SLongFNT ) scenarios. We first investigate whether long-content transcriptions can improve the vanilla conformer transducer (C-T) models. Our experiments indicate that the vanilla C-T models do not exhibit improved performance when utilizing long-content transcriptions, possibly due to the predictor network of C-T models not functioning as a pure language model. Instead, FNT shows its potential in utilizing long-content information, where we propose the LongFNT model and explore the impact of long-content information in both text (LongFNT-Text) and speech (LongFNT-Speech). The proposed LongFNT-Text and LongFNT-Speech models further complement each other to achieve better performance, with transcription history proving more valuable to the model. The effectiveness of our LongFNT approach is evaluated on LibriSpeech and GigaSpeech corpora, and obtains relative 19% and 12% word error rate reduction, respectively. Furthermore, we extend the LongFNT model to the streaming scenario, which is named SLongFNT , consisting of SLongFNT-Text and SLongFNT-Speech approaches to utilize long-content text and speech information. Experiments show that the proposed SLongFNT model achieves relative 26% and 17% WER reduction on LibriSpeech and GigaSpeech respectively while keeping a good latency, compared to the FNT baseline. Overall, our proposed LongFNT and SLongFNT highlight the significance of considering long-content speech and transcription knowledge for improving both non-streaming and streaming speech recognition systems.
In this paper, we study the problem of watermarking large language models (LLMs). We consider the trade-off between model distortion and detection ability and formulate it as a constrained optimization problem based on the green-red algorithm of Kirchenbauer et al. (2023a). We show that the optimal solution to the optimization problem enjoys a nice analytical property which provides a better understanding and inspires the algorithm design for the watermarking process. We develop an online dual gradient ascent watermarking algorithm in light of this optimization formulation and prove its asymptotic Pareto optimality between model distortion and detection ability. Such a result guarantees an averaged increased green list probability and henceforth detection ability explicitly (in contrast to previous results). Moreover, we provide a systematic discussion on the choice of the model distortion metrics for the watermarking problem. We justify our choice of KL divergence and present issues with the existing criteria of ``distortion-free'' and perplexity. Finally, we empirically evaluate our algorithms on extensive datasets against benchmark algorithms.
In this article, we will look at autoencoders. This article covers the mathematics and the fundamental concepts of autoencoders. We will discuss what they are, what the limitations are, the typical use cases, and we will look at some examples. We will start with a general introduction to autoencoders, and we will discuss the role of the activation function in the output layer and the loss function. We will then discuss what the reconstruction error is. Finally, we will look at typical applications as dimensionality reduction, classification, denoising, and anomaly detection. This paper contains the notes of a PhD-level lecture on autoencoders given in 2021.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax