The sheer volume of data has been generated from the fields of computer vision, medical imageology, astronomy, web information tracking, etc., which hampers the implementation of various statistical algorithms. An efficient and popular method to reduce the computation burden is subsampling. Previous studies focused on subsampling algorithms for non-regularized regression such as ordinary least square regression and logistic regression. In this article, we introduce a flexible and efficient subsampling algorithm based on A-optimality for Elastic-net regression. Theoretical results are given describing the statistical properties of the proposed algorithm. Four numerical examples are given to examine the promising empirical characteristics of the technique. Finally, the algorithm is applied in Blog and 2D-CT slice datasets in reality and has shown a significant lead over the traditional leveraging subsampling method.
In many applications, when building linear regression models, it is important to account for the presence of outliers, i.e., corrupted input data points. Such problems can be formulated as mixed-integer optimization problems involving cubic terms, each given by the product of a binary variable and a quadratic term of the continuous variables. Existing approaches in the literature, typically relying on the linearization of the cubic terms using big-M constraints, suffer from weak relaxation and poor performance in practice. In this work we derive stronger second-order conic relaxations that do not involve big-M constraints. Our computational experiments indicate that the proposed formulations are several orders-of-magnitude faster than existing big-M formulations in the literature for this problem.
We present a simple linear regression based approach for learning the weights and biases of a neural network, as an alternative to standard gradient based backpropagation. The present work is exploratory in nature, and we restrict the description and experiments to (i) simple feedforward neural networks, (ii) scalar (single output) regression problems, and (iii) invertible activation functions. However, the approach is intended to be extensible to larger, more complex architectures. The key idea is the observation that the input to every neuron in a neural network is a linear combination of the activations of neurons in the previous layer, as well as the parameters (weights and biases) of the layer. If we are able to compute the ideal total input values to every neuron by working backwards from the output, we can formulate the learning problem as a linear least squares problem which iterates between updating the parameters and the activation values. We present an explicit algorithm that implements this idea, and we show that (at least for simple problems) the approach is more stable and faster than gradient-based backpropagation.
Missing data arise in most applied settings and are ubiquitous in electronic health records (EHR). When data are missing not at random (MNAR) with respect to measured covariates, sensitivity analyses are often considered. These post-hoc solutions, however, are often unsatisfying in that they are not guaranteed to yield concrete conclusions. Motivated by an EHR-based study of long-term outcomes following bariatric surgery, we consider the use of double sampling as a means to mitigate MNAR outcome data when the statistical goals are estimation and inference regarding causal effects. We describe assumptions that are sufficient for the identification of the joint distribution of confounders, treatment, and outcome under this design. Additionally, we derive efficient and robust estimators of the average causal treatment effect under a nonparametric model and under a model assuming outcomes were, in fact, initially missing at random (MAR). We compare these in simulations to an approach that adaptively estimates based on evidence of violation of the MAR assumption. Finally, we also show that the proposed double sampling design can be extended to handle arbitrary coarsening mechanisms, and derive nonparametric efficient estimators of any smooth full data functional.
We consider Bayesian linear regression with sparsity-inducing prior and design efficient sampling algorithms leveraging posterior contraction properties. A quasi-likelihood with Gaussian spike-and-slab (that is favorable both statistically and computationally) is investigated and two algorithms based on Gibbs sampling and Stochastic Localization are analyzed, both under the same (quite natural) statistical assumptions that also enable valid inference on the sparse planted signal. The benefit of the Stochastic Localization sampler is particularly prominent for data matrix that is not well-designed.
We show the sup-norm convergence of deep neural network estimators with a novel adversarial training scheme. For the nonparametric regression problem, it has been shown that an estimator using deep neural networks can achieve better performances in the sense of the $L2$-norm. In contrast, it is difficult for the neural estimator with least-squares to achieve the sup-norm convergence, due to the deep structure of neural network models. In this study, we develop an adversarial training scheme and investigate the sup-norm convergence of deep neural network estimators. First, we find that ordinary adversarial training makes neural estimators inconsistent. Second, we show that a deep neural network estimator achieves the optimal rate in the sup-norm sense by the proposed adversarial training with correction. We extend our adversarial training to general setups of a loss function and a data-generating function. Our experiments support the theoretical findings.
A Two-Stage approach enables researchers to make optimal non-linear predictions via Generalized Ridge Regression using models that contain two or more x-predictor variables and make only realistic minimal assumptions. The optimal regression coefficient estimates that result are either unbiased or most likely to have mininal MSE risk under Normal distribution theory. All necessary calculations and graphical displays are generated using current versions of CRAN R-packages. A numerical example using the "corrected" USArrests data.frame introduces and illustrates this new robust statistical methodology. While applying this strategy to regression models with several hundred observations is straight-forward, the computations required in such cases can be extensive.
In this study, a density-on-density regression model is introduced, where the association between densities is elucidated via a warping function. The proposed model has the advantage of a being straightforward demonstration of how one density transforms into another. Using the Riemannian representation of density functions, which is the square-root function (or half density), the model is defined in the correspondingly constructed Riemannian manifold. To estimate the warping function, it is proposed to minimize the average Hellinger distance, which is equivalent to minimizing the average Fisher-Rao distance between densities. An optimization algorithm is introduced by estimating the smooth monotone transformation of the warping function. Asymptotic properties of the proposed estimator are discussed. Simulation studies demonstrate the superior performance of the proposed approach over competing approaches in predicting outcome density functions. Applying to a proteomic-imaging study from the Alzheimer's Disease Neuroimaging Initiative, the proposed approach illustrates the connection between the distribution of protein abundance in the cerebrospinal fluid and the distribution of brain regional volume. Discrepancies among cognitive normal subjects, patients with mild cognitive impairment, and Alzheimer's disease (AD) are identified and the findings are in line with existing knowledge about AD.
Batch active learning is a popular approach for efficiently training machine learning models on large, initially unlabelled datasets by repeatedly acquiring labels for batches of data points. However, many recent batch active learning methods are white-box approaches and are often limited to differentiable parametric models: they score unlabeled points using acquisition functions based on model embeddings or first- and second-order derivatives. In this paper, we propose black-box batch active learning for regression tasks as an extension of white-box approaches. Crucially, our method only relies on model predictions. This approach is compatible with a wide range of machine learning models, including regular and Bayesian deep learning models and non-differentiable models such as random forests. It is rooted in Bayesian principles and utilizes recent kernel-based approaches. This allows us to extend a wide range of existing state-of-the-art white-box batch active learning methods (BADGE, BAIT, LCMD) to black-box models. We demonstrate the effectiveness of our approach through extensive experimental evaluations on regression datasets, achieving surprisingly strong performance compared to white-box approaches for deep learning models.
In this paper, we aim at establishing an approximation theory and a learning theory of distribution regression via a fully connected neural network (FNN). In contrast to the classical regression methods, the input variables of distribution regression are probability measures. Then we often need to perform a second-stage sampling process to approximate the actual information of the distribution. On the other hand, the classical neural network structure requires the input variable to be a vector. When the input samples are probability distributions, the traditional deep neural network method cannot be directly used and the difficulty arises for distribution regression. A well-defined neural network structure for distribution inputs is intensively desirable. There is no mathematical model and theoretical analysis on neural network realization of distribution regression. To overcome technical difficulties and address this issue, we establish a novel fully connected neural network framework to realize an approximation theory of functionals defined on the space of Borel probability measures. Furthermore, based on the established functional approximation results, in the hypothesis space induced by the novel FNN structure with distribution inputs, almost optimal learning rates for the proposed distribution regression model up to logarithmic terms are derived via a novel two-stage error decomposition technique.
Variational quantum algorithms (VQAs) prevail to solve practical problems such as combinatorial optimization, quantum chemistry simulation, quantum machine learning, and quantum error correction on noisy quantum computers. For variational quantum machine learning, a variational algorithm with model interpretability built into the algorithm is yet to be exploited. In this paper, we construct a quantum regression algorithm and identify the direct relation of variational parameters to learned regression coefficients, while employing a circuit that directly encodes the data in quantum amplitudes reflecting the structure of the classical data table. The algorithm is particularly suitable for well-connected qubits. With compressed encoding and digital-analog gate operation, the run time complexity is logarithmically more advantageous than that for digital 2-local gate native hardware with the number of data entries encoded, a decent improvement in noisy intermediate-scale quantum computers and a minor improvement for large-scale quantum computing Our suggested method of compressed binary encoding offers a remarkable reduction in the number of physical qubits needed when compared to the traditional one-hot-encoding technique with the same input data. The algorithm inherently performs linear regression but can also be used easily for nonlinear regression by building nonlinear features into the training data. In terms of measured cost function which distinguishes a good model from a poor one for model training, it will be effective only when the number of features is much less than the number of records for the encoded data structure to be observable. To echo this finding and mitigate hardware noise in practice, the ensemble model training from the quantum regression model learning with important feature selection from regularization is incorporated and illustrated numerically.