亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Retinopathy of Prematurity (ROP) is a potentially blinding eye disorder because of damage to the eye's retina which can affect babies born prematurely. Screening of ROP is essential for early detection and treatment. This is a laborious and manual process which requires trained physician performing dilated ophthalmological examination which can be subjective resulting in lower diagnosis success for clinically significant disease. Automated diagnostic methods can assist ophthalmologists increase diagnosis accuracy using deep learning. Several research groups have highlighted various approaches. Captured ROP Retcam images suffer from poor quality. This paper proposes the use of improved novel fundus preprocessing methods using pretrained transfer learning frameworks to create hybrid models to give higher diagnosis accuracy. Once trained and validated, the evaluations showed that these novel methods in comparison to traditional imaging processing contribute to better and in many aspects higher accuracy in classifying Plus disease, Stages of ROP and Zones in comparison to peer papers.

相關內容

機器學習系統設計系統評估標準

Despite the utility of Large Language Models (LLMs) across a wide range of tasks and scenarios, developing a method for reliably evaluating LLMs across varied contexts continues to be challenging. Modern evaluation approaches often use LLMs to assess responses generated by LLMs. However, the meta-evaluation conducted to assess the effectiveness of these LLMs as evaluators is typically constrained by the coverage of existing benchmarks or requires extensive human annotation. This underscores the urgency of methods for scalable meta-evaluation that can effectively, reliably, and efficiently evaluate the performance of LLMs as evaluators across diverse tasks and scenarios, particularly in potentially new, user-defined scenarios. To fill this gap, we propose ScaleEval, an agent-debate-assisted meta-evaluation framework that leverages the capabilities of multiple communicative LLM agents. This framework supports multi-round discussions to assist human annotators in discerning the most capable LLMs as evaluators, which significantly eases their workload in cases that used to require large-scale annotations during meta-evaluation. We release the code for our framework, which is publicly available at: \url{//github.com/GAIR-NLP/scaleeval}.

The emergent abilities of Large Language Models (LLMs), which power tools like ChatGPT and Bard, have produced both excitement and worry about how AI will impact academic writing. In response to rising concerns about AI use, authors of academic publications may decide to voluntarily disclose any AI tools they use to revise their manuscripts, and journals and conferences could begin mandating disclosure and/or turn to using detection services, as many teachers have done with student writing in class settings. Given these looming possibilities, we investigate whether academics view it as necessary to report AI use in manuscript preparation and how detectors react to the use of AI in academic writing.

Communication with the goal of accurately conveying meaning, rather than accurately transmitting symbols, has become an area of growing interest. This paradigm, termed semantic communication, typically leverages modern developments in artificial intelligence and machine learning to improve the efficiency and robustness of communication systems. However, a standard model for capturing and quantifying the details of "meaning" is lacking, with many leading approaches to semantic communication adopting a black-box framework with little understanding of what exactly the model is learning. One solution is to utilize the conceptual spaces framework, which models meaning explicitly in a geometric manner. Though prior work studying semantic communication with conceptual spaces has shown promising results, these previous attempts involve hand-crafting a conceptual space model, severely limiting the scalability and practicality of the approach. In this work, we develop a framework for learning a domain of a conceptual space model using only the raw data with high-level property labels. In experiments using the MNIST and CelebA datasets, we show that the domains learned using the framework maintain semantic similarity relations and possess interpretable dimensions.

Chromogenic RNAscope dye and haematoxylin staining of cancer tissue facilitates diagnosis of the cancer type and subsequent treatment, and fits well into existing pathology workflows. However, manual quantification of the RNAscope transcripts (dots), which signify gene expression, is prohibitively time consuming. In addition, there is a lack of verified supporting methods for quantification and analysis. This paper investigates the usefulness of gray level texture features for automatically segmenting and classifying the positions of RNAscope transcripts from breast cancer tissue. Feature analysis showed that a small set of gray level features, including Gray Level Dependence Matrix and Neighbouring Gray Tone Difference Matrix features, were well suited for the task. The automated method performed similarly to expert annotators at identifying the positions of RNAscope transcripts, with an F1-score of 0.571 compared to the expert inter-rater F1-score of 0.596. These results demonstrate the potential of gray level texture features for automated quantification of RNAscope in the pathology workflow.

Parkinson's disease (PD) is a debilitating neurological disorder that necessitates precise and early diagnosis for effective patient care. This study aims to develop a diagnostic model capable of achieving both high accuracy and minimizing false negatives, a critical factor in clinical practice. Given the limited training data, a feature selection strategy utilizing ANOVA is employed to identify the most informative features. Subsequently, various machine learning methods, including Echo State Networks (ESN), Random Forest, k-nearest Neighbors, Support Vector Classifier, Extreme Gradient Boosting, and Decision Tree, are employed and thoroughly evaluated. The statistical analyses of the results highlight ESN's exceptional performance, showcasing not only superior accuracy but also the lowest false negative rate among all methods. Consistently, statistical data indicates that the ESN method consistently maintains a false negative rate of less than 8% in 83% of cases. ESN's capacity to strike a delicate balance between diagnostic precision and minimizing misclassifications positions it as an exemplary choice for PD diagnosis, especially in scenarios characterized by limited data. This research marks a significant step towards more efficient and reliable PD diagnosis, with potential implications for enhanced patient outcomes and healthcare dynamics.

Chinese Spelling Check (CSC) is a meaningful task in the area of Natural Language Processing (NLP) which aims at detecting spelling errors in Chinese texts and then correcting these errors. However, CSC models are based on pretrained language models, which are trained on a general corpus. Consequently, their performance may drop when confronted with downstream tasks involving domain-specific terms. In this paper, we conduct a thorough evaluation about the domain adaption ability of various typical CSC models by building three new datasets encompassing rich domain-specific terms from the financial, medical, and legal domains. Then we conduct empirical investigations in the corresponding domain-specific test datasets to ascertain the cross-domain adaptation ability of several typical CSC models. We also test the performance of the popular large language model ChatGPT. As shown in our experiments, the performances of the CSC models drop significantly in the new domains.

Melanoma is the most severe type of skin cancer due to its ability to cause metastasis. It is more common in black people, often affecting acral regions: palms, soles, and nails. Deep neural networks have shown tremendous potential for improving clinical care and skin cancer diagnosis. Nevertheless, prevailing studies predominantly rely on datasets of white skin tones, neglecting to report diagnostic outcomes for diverse patient skin tones. In this work, we evaluate supervised and self-supervised models in skin lesion images extracted from acral regions commonly observed in black individuals. Also, we carefully curate a dataset containing skin lesions in acral regions and assess the datasets concerning the Fitzpatrick scale to verify performance on black skin. Our results expose the poor generalizability of these models, revealing their favorable performance for lesions on white skin. Neglecting to create diverse datasets, which necessitates the development of specialized models, is unacceptable. Deep neural networks have great potential to improve diagnosis, particularly for populations with limited access to dermatology. However, including black skin lesions is necessary to ensure these populations can access the benefits of inclusive technology.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司