We develop a novel, general and computationally efficient framework, called Divide and Conquer Dynamic Programming (DCDP), for localizing change points in time series data with high-dimensional features. DCDP deploys a class of greedy algorithms that are applicable to a broad variety of high-dimensional statistical models and can enjoy almost linear computational complexity. We investigate the performance of DCDP in three commonly studied change point settings in high dimensions: the mean model, the Gaussian graphical model, and the linear regression model. In all three cases, we derive non-asymptotic bounds for the accuracy of the DCDP change point estimators. We demonstrate that the DCDP procedures consistently estimate the change points with sharp, and in some cases, optimal rates while incurring significantly smaller computational costs than the best available algorithms. Our findings are supported by extensive numerical experiments on both synthetic and real data.
We consider decentralized optimization problems in which a number of agents collaborate to minimize the average of their local functions by exchanging over an underlying communication graph. Specifically, we place ourselves in an asynchronous model where only a random portion of nodes perform computation at each iteration, while the information exchange can be conducted between all the nodes and in an asymmetric fashion. For this setting, we propose an algorithm that combines gradient tracking with a network-level variance reduction (in contrast to variance reduction within each node). This enables each node to track the average of the gradients of the objective functions. Our theoretical analysis shows that the algorithm converges linearly, when the local objective functions are strongly convex, under mild connectivity conditions on the expected mixing matrices. In particular, our result does not require the mixing matrices to be doubly stochastic. In the experiments, we investigate a broadcast mechanism that transmits information from computing nodes to their neighbors, and confirm the linear convergence of our method on both synthetic and real-world datasets.
Line segments are ubiquitous in our human-made world and are increasingly used in vision tasks. They are complementary to feature points thanks to their spatial extent and the structural information they provide. Traditional line detectors based on the image gradient are extremely fast and accurate, but lack robustness in noisy images and challenging conditions. Their learned counterparts are more repeatable and can handle challenging images, but at the cost of a lower accuracy and a bias towards wireframe lines. We propose to combine traditional and learned approaches to get the best of both worlds: an accurate and robust line detector that can be trained in the wild without ground truth lines. Our new line segment detector, DeepLSD, processes images with a deep network to generate a line attraction field, before converting it to a surrogate image gradient magnitude and angle, which is then fed to any existing handcrafted line detector. Additionally, we propose a new optimization tool to refine line segments based on the attraction field and vanishing points. This refinement improves the accuracy of current deep detectors by a large margin. We demonstrate the performance of our method on low-level line detection metrics, as well as on several downstream tasks using multiple challenging datasets. The source code and models are available at //github.com/cvg/DeepLSD.
Self-supervised learning is a central component in recent approaches to deep multi-view clustering (MVC). However, we find large variations in the development of self-supervision-based methods for deep MVC, potentially slowing the progress of the field. To address this, we present DeepMVC, a unified framework for deep MVC that includes many recent methods as instances. We leverage our framework to make key observations about the effect of self-supervision, and in particular, drawbacks of aligning representations with contrastive learning. Further, we prove that contrastive alignment can negatively influence cluster separability, and that this effect becomes worse when the number of views increases. Motivated by our findings, we develop several new DeepMVC instances with new forms of self-supervision. We conduct extensive experiments and find that (i) in line with our theoretical findings, contrastive alignments decreases performance on datasets with many views; (ii) all methods benefit from some form of self-supervision; and (iii) our new instances outperform previous methods on several datasets. Based on our results, we suggest several promising directions for future research. To enhance the openness of the field, we provide an open-source implementation of DeepMVC, including recent models and our new instances. Our implementation includes a consistent evaluation protocol, facilitating fair and accurate evaluation of methods and components.
One-bit quantization with time-varying sampling thresholds has recently found significant utilization potential in statistical signal processing applications due to its relatively low power consumption and low implementation cost. In addition to such advantages, an attractive feature of one-bit analog-to-digital converters (ADCs) is their superior sampling rates as compared to their conventional multi-bit counterparts. This characteristic endows one-bit signal processing frameworks with what we refer to as sample abundance. On the other hand, many signal recovery and optimization problems are formulated as (possibly non-convex) quadratic programs with linear feasibility constraints in the one-bit sampling regime. We demonstrate, with a particular focus on quadratic compressed sensing, that the sample abundance paradigm allows for the transformation of such quadratic problems to merely a linear feasibility problem by forming a large-scale overdetermined linear system; thus removing the need for costly optimization constraints and objectives. To efficiently tackle the emerging overdetermined linear feasibility problem, we further propose an enhanced randomized Kaczmarz algorithm, called Block SKM. Several numerical results are presented to illustrate the effectiveness of the proposed methodologies.
Set cover and hitting set are fundamental problems in combinatorial optimization which are well-studied in the offline, online, and dynamic settings. We study the geometric versions of these problems and present new online and dynamic algorithms for them. In the online version of set cover (resp. hitting set), $m$ sets (resp.~$n$ points) are give $n$ points (resp.~$m$ sets) arrive online, one-by-one. In the dynamic versions, points (resp. sets) can arrive as well as depart. Our goal is to maintain a set cover (resp. hitting set), minimizing the size of the computed solution. For online set cover for (axis-parallel) squares of arbitrary sizes, we present a tight $O(\log n)$-competitive algorithm. In the same setting for hitting set, we provide a tight $O(\log N)$-competitive algorithm, assuming that all points have integral coordinates in $[0,N)^{2}$. No online algorithm had been known for either of these settings, not even for unit squares (apart from the known online algorithms for arbitrary set systems). For both dynamic set cover and hitting set with $d$-dimensional hyperrectangles, we obtain $(\log m)^{O(d)}$-approximation algorithms with $(\log m)^{O(d)}$ worst-case update time. This partially answers an open question posed by Chan et al. [SODA'22]. Previously, no dynamic algorithms with polylogarithmic update time were known even in the setting of squares (for either of these problems). Our main technical contributions are an \emph{extended quad-tree }approach and a \emph{frequency reduction} technique that reduces geometric set cover instances to instances of general set cover with bounded frequency.
Detecting abrupt changes in the community structure of a network from noisy observations is a fundamental problem in statistics and machine learning. This paper presents an online change detection algorithm called Spectral-CUSUM to detect unknown network structure changes through a generalized likelihood ratio statistic. We characterize the average run length (ARL) and the expected detection delay (EDD) of the Spectral-CUSUM procedure and prove its asymptotic optimality. Finally, we demonstrate the good performance of the Spectral-CUSUM procedure and compare it with several baseline methods using simulations and real data examples on seismic event detection using sensor network data.
We revisit the task of computing the edit distance in sublinear time. In the $(k,K)$-gap edit distance problem the task is to distinguish whether the edit distance of two strings is at most $k$ or at least $K$. It has been established by Goldenberg, Krauthgamer and Saha (FOCS '19), with improvements by Kociumaka and Saha (FOCS '20), that the $(k,k^2)$-gap problem can be solved in time $\widetilde O(n/k+\operatorname{poly}(k))$. One of the most natural questions in this line of research is whether the $(k,k^2)$-gap is best-possible for the running time $\widetilde O(n/k+\operatorname{poly}(k))$. In this work we answer this question by significantly improving the gap. Specifically, we show that in time $O(n/k+\operatorname{poly}(k))$ we can even solve the $(k,k^{1+o(1)})$-gap problem. This is the first algorithm that breaks the $(k,k^2)$-gap in this running time. Our algorithm is almost optimal in the following sense: In the low distance regime ($k\le n^{0.19}$) our running time becomes $O(n/k)$, which matches a known $n/k^{1+o(1)}$ lower bound for the $(k,k^{1+o(1)})$-gap problem up to lower order factors. Our result also reveals a surprising similarity of Hamming distance and edit distance in the low distance regime: For both, the $(k,k^{1+o(1)})$-gap problem has time complexity $n/k^{1\pm o(1)}$ for small $k$. In contrast to previous work, which employed a subsampled variant of the Landau-Vishkin algorithm, we instead build upon the algorithm of Andoni, Krauthgamer and Onak (FOCS '10). We first simplify their approach and then show how to to effectively prune their computation tree in order to obtain a sublinear-time algorithm in the given time bound. Towards that, we use a variety of structural insights on the (local and global) patterns that can emerge during this process and design appropriate property testers to effectively detect these patterns.
The paper introduces an interactive machine learning mechanism to process the measurements of an uncertain, nonlinear dynamic process and hence advise an actuation strategy in real-time. For concept demonstration, a trajectory-following optimization problem of a Kinova robotic arm is solved using an integral reinforcement learning approach with guaranteed stability for slowly varying dynamics. The solution is implemented using a model-free value iteration process to solve the integral temporal difference equations of the problem. The performance of the proposed technique is benchmarked against that of another model-free high-order approach and is validated for dynamic payload and disturbances. Unlike its benchmark, the proposed adaptive strategy is capable of handling extreme process variations. This is experimentally demonstrated by introducing static and time-varying payloads close to the rated maximum payload capacity of the manipulator arm. The comparison algorithm exhibited up to a seven-fold percent overshoot compared to the proposed integral reinforcement learning solution. The robustness of the algorithm is further validated by disturbing the real-time adapted strategy gains with a white noise of a standard deviation as high as 5%.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16]. Our codes are publicly available at //github.com/google-research/google-research/tree/master/cluster_gcn.