亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Set cover and hitting set are fundamental problems in combinatorial optimization which are well-studied in the offline, online, and dynamic settings. We study the geometric versions of these problems and present new online and dynamic algorithms for them. In the online version of set cover (resp. hitting set), $m$ sets (resp.~$n$ points) are give $n$ points (resp.~$m$ sets) arrive online, one-by-one. In the dynamic versions, points (resp. sets) can arrive as well as depart. Our goal is to maintain a set cover (resp. hitting set), minimizing the size of the computed solution. For online set cover for (axis-parallel) squares of arbitrary sizes, we present a tight $O(\log n)$-competitive algorithm. In the same setting for hitting set, we provide a tight $O(\log N)$-competitive algorithm, assuming that all points have integral coordinates in $[0,N)^{2}$. No online algorithm had been known for either of these settings, not even for unit squares (apart from the known online algorithms for arbitrary set systems). For both dynamic set cover and hitting set with $d$-dimensional hyperrectangles, we obtain $(\log m)^{O(d)}$-approximation algorithms with $(\log m)^{O(d)}$ worst-case update time. This partially answers an open question posed by Chan et al. [SODA'22]. Previously, no dynamic algorithms with polylogarithmic update time were known even in the setting of squares (for either of these problems). Our main technical contributions are an \emph{extended quad-tree }approach and a \emph{frequency reduction} technique that reduces geometric set cover instances to instances of general set cover with bounded frequency.

相關內容

According to Aistleitner and Weimar, there exist two-dimensional (double) infinite matrices whose star-discrepancy $D_N^{*s}$ of the first $N$ rows and $s$ columns, interpreted as $N$ points in $[0,1]^s$, satisfies an inequality of the form $$D_N^{*s} \leq \sqrt{\alpha} \sqrt{A+B\frac{\ln(\log_2(N))}{s}}\sqrt{\frac{s}{N}}$$ with $\alpha = \zeta^{-1}(2) \approx 1.73, A=1165$ and $B=178$. These matrices are obtained by using i.i.d sequences, and the parameters $s$ and $N$ refer to the dimension and the sample size respectively. In this paper, we improve their result in two directions: First, we change the character of the equation so that the constant $A$ gets replaced by a value $A_s$ dependent on the dimension $s$ such that for $s>1$ we have $A_s<A$. Second, we generalize the result to the case of the (extreme) discrepancy. The paper is complemented by a section where we show numerical results for the dependence of the parameter $A_s$ on $s$.

Recovering causal relationships from data is an important problem. Using observational data, one can typically only recover causal graphs up to a Markov equivalence class and additional assumptions or interventional data are needed for complete recovery. In this work, under some standard assumptions, we study causal graph discovery via adaptive interventions with node-dependent interventional costs. For this setting, we show that no algorithm can achieve an approximation guarantee that is asymptotically better than linear in the number of vertices with respect to the verification number; a well-established benchmark for adaptive search algorithms. Motivated by this negative result, we define a new benchmark that captures the worst-case interventional cost for any search algorithm. Furthermore, with respect to this new benchmark, we provide adaptive search algorithms that achieve logarithmic approximations under various settings: atomic, bounded size interventions and generalized cost objectives.

Motivated by recent works on streaming algorithms for constraint satisfaction problems (CSPs), we define and analyze oblivious algorithms for the Max-$k$AND problem. This generalizes the definition by Feige and Jozeph (Algorithmica '15) of oblivious algorithms for Max-DICUT, a special case of Max-$2$AND. Oblivious algorithms round each variable with probability depending only on a quantity called the variable's bias. For each oblivious algorithm, we design a so-called "factor-revealing linear program" (LP) which captures its worst-case instance, generalizing one of Feige and Jozeph for Max-DICUT. Then, departing from their work, we perform a fully explicit analysis of these (infinitely many!) LPs. In particular, we show that for all $k$, oblivious algorithms for Max-$k$AND provably outperform a special subclass of algorithms we call "superoblivious" algorithms. Our result has implications for streaming algorithms: Generalizing the result for Max-DICUT of Saxena, Singer, Sudan, and Velusamy (SODA'23), we prove that certain separation results hold between streaming models for infinitely many CSPs: for every $k$, $O(\log n)$-space sketching algorithms for Max-$k$AND known to be optimal in $o(\sqrt n)$-space can be beaten in (a) $O(\log n)$-space under a random-ordering assumption, and (b) $O(n^{1-1/k} D^{1/k})$ space under a maximum-degree-$D$ assumption. Even in the previously-known case of Max-DICUT, our analytic proof gives a fuller, computer-free picture of these separation results.

We obtain improved distributed algorithms in the CONGEST message-passing setting for problems on power graphs of an input graph $G$. This includes Coloring, Maximal Independent Set, and related problems. We develop a general deterministic technique that transforms R-round algorithms for $G$ with certain properties into $O(R \cdot \Delta^{k/2 - 1})$-round algorithms for $G^k$. This improves the previously-known running time for such transformation, which was $O(R \cdot \Delta^{k - 1})$. Consequently, for problems that can be solved by algorithms with the required properties and within polylogarithmic number of rounds, we obtain {quadratic} improvement for $G^k$ and {exponential} improvement for $G^2$. We also obtain significant improvements for problems with larger number of rounds in $G$.

Risk-limiting audits (RLAs) are a significant tool in increasing confidence in the accuracy of elections. They consist of randomized algorithms which check that an election's vote tally, as reported by a vote tabulation system, corresponds to the correct candidates winning. If an initial vote count leads to the wrong election winner, an RLA guarantees to identify the error with high probability over its own randomness. These audits operate by sequentially sampling and examining ballots until they can either confirm the reported winner or identify the true winner. The first part of this work suggests a new generic method, called ``Batchcomp", for converting classical (ballot-level) RLAs into ones that operate on batches. As a concrete application of the suggested method, we develop the first ballot-level RLA for the Israeli Knesset elections, and convert it to one which operates on batches. We ran the suggested ``Batchcomp" procedure on the results of 22nd, 23rd and 24th Knesset elections, both with and without errors. The second part of this work suggests a new use-case for RLAs: verifying that a population census leads to the correct allocation of political power to a nation's districts or federal-states. We present an adaptation of ALPHA, an existing RLA method, to a method which applies to censuses. Our census-RLA is applicable in nations where parliament seats are allocated to geographical regions in proportion to their population according to a certain class of functions (highest averages). It relies on data from both the census and from an additional procedure which is already conducted in many countries today, called a post-enumeration survey.

Fair distribution of indivisible tasks with non-positive valuations (aka chores) has given rise to a large body of work in recent years. A popular approximate fairness notion is envy-freeness up to one item (EF1), which requires that any pairwise envy can be eliminated by the removal of a single item. While an EF1 and Pareto optimal (PO) allocation of goods always exists and can be computed via several well-known algorithms, even the existence of such solutions for chores remains open, to date. We take an epistemic approach utilizing information asymmetry by introducing dubious chores -- items that inflict no cost on receiving agents, but are perceived costly by others. On a technical level, dubious chores provide a more fine-grained approximation of envy-freeness -- compared to relaxations such as EF1 -- which enables progress towards addressing open problems on the existence and computation of EF1 and PO. In particular, we show that finding allocations with optimal number of dubious chores is computationally hard even for highly restricted classes of valuations. Nonetheless, we prove the existence of envy-free and PO allocations for $n$ agents with only $2n-2$ dubious chores and strengthen it to $n-1$ dubious chores in four special classes of valuations. Our experimental analysis demonstrate that baseline algorithms only require a relatively small number of dubious chores to achieve envy-freeness in practice.

Beame et al. [ITCS 2018 & TALG 2021] introduced and used the Bipartite Independent Set (BIS) and Independent Set (IS) oracle access to an unknown, simple, unweighted and undirected graph and solved the edge estimation problem. The introduction of this oracle set forth a series of works in a short span of time that either solved open questions mentioned by Beame et al. or were generalizations of their work as in Dell and Lapinskas [STOC 2018], Dell, Lapinskas and Meeks [SODA 2020], Bhattacharya et al. [ISAAC 2019 & Theory Comput. Syst. 2021], and Chen et al. [SODA 2020]. Edge estimation using BIS can be done using polylogarithmic queries, while IS queries need sub-linear but more than polylogarithmic queries. Chen et al. improved Beame et al.'s upper bound result for edge estimation using IS and also showed an almost matching lower bound. Beame et al. in their introductory work asked a few open questions out of which one was on estimating structures of higher order than edges, like triangles and cliques, using BIS queries. In this work, we completely resolve the query complexity of estimating triangles using BIS oracle. While doing so, we prove a lower bound for an even stronger query oracle called Edge Emptiness (EE) oracle, recently introduced by Assadi, Chakrabarty and Khanna [ESA 2021] to test graph connectivity.

Let a polytope $P$ be defined by a system $A x \leq b$. We consider the problem of counting the number of integer points inside $P$, assuming that $P$ is $\Delta$-modular, where the polytope $P$ is called $\Delta$-modular if all the rank sub-determinants of $A$ are bounded by $\Delta$ in the absolute value. We present a new FPT-algorithm, parameterized by $\Delta$ and by the maximal number of vertices in $P$, where the maximum is taken by all r.h.s. vectors $b$. We show that our algorithm is more efficient for $\Delta$-modular problems than the approach of A. Barvinok et al. To this end, we do not directly compute the short rational generating function for $P \cap Z^n$, which is commonly used for the considered problem. Instead, we use the dynamic programming principle to compute its particular representation in the form of exponential series that depends on a single variable. We completely do not rely to the Barvinok's unimodular sign decomposition technique. Using our new complexity bound, we consider different special cases that may be of independent interest. For example, we give FPT-algorithms for counting the integer points number in $\Delta$-modular simplices and similar polytopes that have $n + O(1)$ facets. As a special case, for any fixed $m$, we give an FPT-algorithm to count solutions of the unbounded $m$-dimensional $\Delta$-modular subset-sum problem.

Discrete event systems (DES) have been deeply developed and applied in practice, but state complexity in DES still is an important problem to be better solved with innovative methods. With the development of quantum computing and quantum control, a natural problem is to simulate DES by means of quantum computing models and to establish {\it quantum DES} (QDES). The motivation is twofold: on the one hand, QDES have potential applications when DES are simulated and processed by quantum computers, where quantum systems are employed to simulate the evolution of states driven by discrete events, and on the other hand, QDES may have essential advantages over DES concerning state complexity for imitating some practical problems. So, the goal of this paper is to establish a basic framework of QDES by using {\it quantum finite automata} (QFA) as the modelling formalisms, and the supervisory control theorems of QDES are established and proved. Then we present a polynomial-time algorithm to decide whether or not the controllability condition holds. In particular, we construct a number of new examples of QFA to illustrate the supervisory control of QDES and to verify the essential advantages of QDES over classical DES in state complexity.

We consider the online version of the piercing set problem, where geometric objects arrive one by one, and the online algorithm must maintain a valid piercing set for the already arrived objects by making irrevocable decisions. It is easy to observe that any deterministic online algorithm that solves this problem has a competitive ratio of at least $\Omega(n)$, which even holds when the objects are intervals. This paper considers the piercing set problem when objects are bounded scaled. We propose deterministic algorithms for bounded scaled fat objects. Piercing translated copies of an object is equivalent to the unit covering problem, which is well-studied in the online setup. Surprisingly, no upper bound of the competitive ratio was known for the unit covering problem when unit objects are anything other than balls and hypercubes. Our result gives an upper bound of the competitive ratio for the unit covering problem for various unit objects. For fixed-oriented hypercubes in $\mathbb{R}^d$ with the scaling factor in the range $[1,k]$, we propose an algorithm having a competitive ratio of at most~$3^d\log_2 k+2^d$. In the end, we show a lower bound of the competitive ratio for bounded scaled objects of various types like $\alpha$-fat objects in $\mathbb{R}^2$, axis-aligned hypercubes in $\mathbb{R}^d$, and balls in $\mathbb{R}^2$ and~$\mathbb{R}^3$.

北京阿比特科技有限公司