Let a polytope $P$ be defined by a system $A x \leq b$. We consider the problem of counting the number of integer points inside $P$, assuming that $P$ is $\Delta$-modular, where the polytope $P$ is called $\Delta$-modular if all the rank sub-determinants of $A$ are bounded by $\Delta$ in the absolute value. We present a new FPT-algorithm, parameterized by $\Delta$ and by the maximal number of vertices in $P$, where the maximum is taken by all r.h.s. vectors $b$. We show that our algorithm is more efficient for $\Delta$-modular problems than the approach of A. Barvinok et al. To this end, we do not directly compute the short rational generating function for $P \cap Z^n$, which is commonly used for the considered problem. Instead, we use the dynamic programming principle to compute its particular representation in the form of exponential series that depends on a single variable. We completely do not rely to the Barvinok's unimodular sign decomposition technique. Using our new complexity bound, we consider different special cases that may be of independent interest. For example, we give FPT-algorithms for counting the integer points number in $\Delta$-modular simplices and similar polytopes that have $n + O(1)$ facets. As a special case, for any fixed $m$, we give an FPT-algorithm to count solutions of the unbounded $m$-dimensional $\Delta$-modular subset-sum problem.
We study the problem of computing an optimal policy of an infinite-horizon discounted constrained Markov decision process (constrained MDP). Despite the popularity of Lagrangian-based policy search methods used in practice, the oscillation of policy iterates in these methods has not been fully understood, bringing out issues such as violation of constraints and sensitivity to hyper-parameters. To fill this gap, we employ the Lagrangian method to cast a constrained MDP into a constrained saddle-point problem in which max/min players correspond to primal/dual variables, respectively, and develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy. Specifically, we first propose a regularized policy gradient primal-dual (RPG-PD) method that updates the policy using an entropy-regularized policy gradient, and the dual via a quadratic-regularized gradient ascent, simultaneously. We prove that the policy primal-dual iterates of RPG-PD converge to a regularized saddle point with a sublinear rate, while the policy iterates converge sublinearly to an optimal constrained policy. We further instantiate RPG-PD in large state or action spaces by including function approximation in policy parametrization, and establish similar sublinear last-iterate policy convergence. Second, we propose an optimistic policy gradient primal-dual (OPG-PD) method that employs the optimistic gradient method to update primal/dual variables, simultaneously. We prove that the policy primal-dual iterates of OPG-PD converge to a saddle point that contains an optimal constrained policy, with a linear rate. To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
We study statistical/computational tradeoffs for the following density estimation problem: given $k$ distributions $v_1, \ldots, v_k$ over a discrete domain of size $n$, and sampling access to a distribution $p$, identify $v_i$ that is "close" to $p$. Our main result is the first data structure that, given a sublinear (in $n$) number of samples from $p$, identifies $v_i$ in time sublinear in $k$. We also give an improved version of the algorithm of Acharya et al. (2018) that reports $v_i$ in time linear in $k$. The experimental evaluation of the latter algorithm shows that it achieves a significant reduction in the number of operations needed to achieve a given accuracy compared to prior work.
Integer linear programming (ILP) models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work proposes new characterizations of ILP with the concept of boundary solutions. Motivated by the new characterizations, we develop an efficient local search solver, which is the first local search solver for general ILP validated on a large heterogeneous problem dataset. We propose a new local search framework that switches between three modes, namely Search, Improve, and Restore modes. We design tailored operators adapted to different modes, thus improving the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values, trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances. The theoretical analysis of our algorithm is also presented, which shows our algorithm could avoid visiting unnecessary regions and also maintain good connectivity of targeted solutions.
Stepped wedge cluster randomized experiments represent a class of unidirectional crossover designs that are increasingly adopted for comparative effectiveness and implementation science research. Although stepped wedge cluster randomized experiments have become popular, definitions of estimands and robust methods to target clearly-defined estimands remain insufficient. To address this gap, we describe a class of estimands that explicitly acknowledge the multilevel data structure in stepped wedge cluster randomized experiments, and highlight three typical members of the estimand class that are interpretable and are of practical interest. We then discuss four formulations of analysis of covariance (ANCOVA) working models to achieve estimand-aligned analyses. By exploiting baseline covariates, each ANCOVA model can potentially improve the estimation efficiency over the unadjusted estimators. In addition, each ANCOVA estimator is model-assisted in a sense that its point estimator is consistent to the target estimand even when the working model is misspecified. Under the stepped wedge randomization scheme, we establish the finite population Central Limit Theorem for each estimator, which motivates design-based variance estimators. Through simulations, we study the finite-sample operating characteristics of the ANCOVA estimators under different data generating processes. We illustrate their applications via the analysis of the Washington State Expedited Partner Therapy study.
We present a finite element discretisation to model the interaction between a poroelastic structure and an elastic medium. The consolidation problem considers fully coupled deformations across an interface, ensuring continuity of displacement and total traction, as well as no-flux for the fluid phase. Our formulation of the poroelasticity equations incorporates displacement, fluid pressure, and total pressure, while the elasticity equations adopt a displacement-pressure formulation. Notably, the transmission conditions at the interface are enforced without the need for Lagrange multipliers. We demonstrate the stability and convergence of the divergence-conforming finite element method across various polynomial degrees. The a priori error bounds remain robust, even when considering large variations in intricate model parameters such as Lam\'e constants, permeability, and storativity coefficient. To enhance computational efficiency and reliability, we develop residual-based a posteriori error estimators that are independent of the aforementioned coefficients. Additionally, we devise parameter-robust and optimal block diagonal preconditioners. Through numerical examples, including adaptive scenarios, we illustrate the scheme's properties such as convergence and parameter robustness.
Multiple algorithms are known for efficiently calculating the prefix probability of a string under a probabilistic context-free grammar (PCFG). Good algorithms for the problem have a runtime cubic in the length of the input string. However, some proposed algorithms are suboptimal with respect to the size of the grammar. This paper proposes a novel speed-up of Jelinek and Lafferty's (1991) algorithm, which runs in $O(n^3 |N|^3 + |N|^4)$, where $n$ is the input length and $|N|$ is the number of non-terminals in the grammar. In contrast, our speed-up runs in $O(n^2 |N|^3+n^3|N|^2)$.
In extreme value theory and other related risk analysis fields, probability weighted moments (PWM) have been frequently used to estimate the parameters of classical extreme value distributions. This method-of-moment technique can be applied when second moments are finite, a reasonable assumption in many environmental domains like climatological and hydrological studies. Three advantages of PWM estimators can be put forward: their simple interpretations, their rapid numerical implementation and their close connection to the well-studied class of U-statistics. Concerning the later, this connection leads to precise asymptotic properties, but non asymptotic bounds have been lacking when off-the-shelf techniques (Chernoff method) cannot be applied, as exponential moment assumptions become unrealistic in many extreme value settings. In addition, large values analysis is not immune to the undesirable effect of outliers, for example, defective readings in satellite measurements or possible anomalies in climate model runs. Recently, the treatment of outliers has sparked some interest in extreme value theory, but results about finite sample bounds in a robust extreme value theory context are yet to be found, in particular for PWMs or tail index estimators. In this work, we propose a new class of robust PWM estimators, inspired by the median-of-means framework of Devroye et al. (2016). This class of robust estimators is shown to satisfy a sub-Gaussian inequality when the assumption of finite second moments holds. Such non asymptotic bounds are also derived under the general contamination model. Our main proposition confirms theoretically a trade-off between efficiency and robustness. Our simulation study indicates that, while classical estimators of PWMs can be highly sensitive to outliers.
The Multiple Drone-Delivery Scheduling Problem (MDSP) is a scheduling problem that optimizes the maximum reward earned by a set of $m$ drones executing a sequence of deliveries on a truck delivery route. The current best-known approximation algorithm for the problem is a $\frac{1}{4}$-approximation algorithm developed by Jana and Mandal (2022). In this paper, we propose exact and approximation algorithms for the general MDSP, as well as a unit-cost variant. We first propose a greedy algorithm which we show to be a $\frac{1}{3}$-approximation algorithm for the general MDSP problem formulation, provided the number of conflicting intervals is less than the number of drones. We then introduce a unit-cost variant of MDSP and we devise an exact dynamic programming algorithm that runs in polynomial time when the number of drones $m$ can be assumed to be a constant.
The problem Power Dominating Set (PDS) is motivated by the placement of phasor measurement units to monitor electrical networks. It asks for a minimum set of vertices in a graph that observes all remaining vertices by exhaustively applying two observation rules. Our contribution is twofold. First, we determine the parameterized complexity of PDS by proving it is $W[P]$-complete when parameterized with respect to the solution size. We note that it was only known to be $W[2]$-hard before. Our second and main contribution is a new algorithm for PDS that efficiently solves practical instances. Our algorithm consists of two complementary parts. The first is a set of reduction rules for PDS that can also be used in conjunction with previously existing algorithms. The second is an algorithm for solving the remaining kernel based on the implicit hitting set approach. Our evaluation on a set of power grid instances from the literature shows that our solver outperforms previous state-of-the-art solvers for PDS by more than one order of magnitude on average. Furthermore, our algorithm can solve previously unsolved instances of continental scale within a few minutes.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.