亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accident of struck-by machines is one of the leading causes of casualties on construction sites. Monitoring workers' proximities to avoid human-machine collisions has aroused great concern in construction safety management. Existing methods are either too laborious and costly to apply extensively, or lacking spatial perception for accurate monitoring. Therefore, this study proposes a novel framework for proximity monitoring using only an ordinary 2D camera to realize real-time human-machine collision warning, which is designed to integrate a monocular 3D object detection model to perceive spatial information from 2D images and a post-processing classification module to identify the proximity as four predefined categories: Dangerous, Potentially Dangerous, Concerned, and Safe. A virtual dataset containing 22000 images with 3D annotations is constructed and publicly released to facilitate the system development and evaluation. Experimental results show that the trained 3D object detection model achieves 75% loose AP within 20 meters. Besides, the implemented system is real-time and camera carrier-independent, achieving an F1 of roughly 0.8 within 50 meters under specified settings for machines of different sizes. This study preliminarily reveals the potential and feasibility of proximity monitoring using only a 2D camera, providing a new promising and economical way for early warning of human-machine collisions.

相關內容

 3D是英文“Three Dimensions”的簡稱,中文是指三維、三個維度、三個坐標,即有長、有寬、有高,換句話說,就是立體的,是相對于只有長和寬的平面(2D)而言。

Alpha-XR Mission conducted by XR Lab PJAIT focused on research related to individual and crew well-being and participatory team collaboration in ICE (isolated, confined and extreme) conditions. In this two-week mission within an analog space habitat, collaboration, objective execution and leisure was facilitated and studied by virtual reality (VR) tools. The mission commander and first officer, both experienced with virtual reality, took part in daily briefings with mission control. In the first week the briefings were voice-only conducted via a channel on Discord. During the following week last briefings were conducted in VR, using Horizon Workrooms. This qualitative pilot study employing participatory observation revealed that VR facilitates communication, especially on complex problems and experiences, providing the sense of emotional connection and shared understanding, that may be lacking in audio calls. The study points to the need to further explore VR-facilitated communication in high-stake environments as it may improve relationships, well-being, and communication outcomes.

Human transports in hospitals are labor-intensive and primarily performed in beds to save time. This transfer method does not promote the mobility or autonomy of the patient. To relieve the caregivers from this time-consuming task, a mobile robot is developed to autonomously transport humans around the hospital. It provides different transfer modes including walking and sitting in a wheelchair. The problem that this paper focuses on is to detect emergencies and ensure the well-being of the patient during the transport. For this purpose, the patient is tracked and monitored with a camera system. OpenPose is used for Human Pose Estimation and a trained classifier for emergency detection. We collected and published a dataset of 18,000 images in lab and hospital environments. It differs from related work because we have a moving robot with different transfer modes in a highly dynamic environment with multiple people in the scene using only RGB-D data. To improve the critical recall metric, we apply threshold moving and a time delay. We compare different models with an AutoML approach. This paper shows that emergencies while walking are best detected by a SVM with a recall of 95.8% on single frames. In the case of sitting transport, the best model achieves a recall of 62.2%. The contribution is to establish a baseline on this new dataset and to provide a proof of concept for the human emergency detection in this use case.

Randomized trials balance all covariates on average and provide the gold standard for estimating treatment effects. Chance imbalances nevertheless exist more or less in realized treatment allocations and intrigue an important question: what should we do in case the treatment groups differ with respect to some important baseline characteristics? A common strategy is to conduct a {\it preliminary test} of the balance of baseline covariates after randomization, and invoke covariate adjustment for subsequent inference if and only if the realized allocation fails some prespecified criterion. Although such practice is intuitive and popular among practitioners, the existing literature has so far only evaluated its properties under strong parametric model assumptions in theory and simulation, yielding results of limited generality. To fill this gap, we examine two strategies for conducting preliminary test-based covariate adjustment by regression, and evaluate the validity and efficiency of the resulting inferences from the randomization-based perspective. As it turns out, the preliminary-test estimator based on the analysis of covariance can be even less efficient than the unadjusted difference in means, and risks anticonservative confidence intervals based on normal approximation even with the robust standard error. The preliminary-test estimator based on the fully interacted specification is on the other hand less efficient than its counterpart under the {\it always-adjust} strategy, and yields overconservative confidence intervals based on normal approximation. Based on theory and simulation, we echo the existing literature and do not recommend the preliminary-test procedure for covariate adjustment in randomized trials.

Software engineering is a domain characterized by intricate decision-making processes, often relying on nuanced intuition and consultation. Recent advancements in deep learning have started to revolutionize software engineering practices through elaborate designs implemented at various stages of software development. In this paper, we present an innovative paradigm that leverages large language models (LLMs) throughout the entire software development process, streamlining and unifying key processes through natural language communication, thereby eliminating the need for specialized models at each phase. At the core of this paradigm lies ChatDev, a virtual chat-powered software development company that mirrors the established waterfall model, meticulously dividing the development process into four distinct chronological stages: designing, coding, testing, and documenting. Each stage engages a team of agents, such as programmers, code reviewers, and test engineers, fostering collaborative dialogue and facilitating a seamless workflow. The chat chain acts as a facilitator, breaking down each stage into atomic subtasks. This enables dual roles, allowing for proposing and validating solutions through context-aware communication, leading to efficient resolution of specific subtasks. The instrumental analysis of ChatDev highlights its remarkable efficacy in software generation, enabling the completion of the entire software development process in under seven minutes at a cost of less than one dollar. It not only identifies and alleviates potential vulnerabilities but also rectifies potential hallucinations while maintaining commendable efficiency and cost-effectiveness. The potential of ChatDev unveils fresh possibilities for integrating LLMs into the realm of software development.

Man-at-the-end (MATE) attackers have full control over the system on which the attacked software runs, and try to break the confidentiality or integrity of assets embedded in the software. Both companies and malware authors want to prevent such attacks. This has driven an arms race between attackers and defenders, resulting in a plethora of different protection and analysis methods. However, it remains difficult to measure the strength of protections because MATE attackers can reach their goals in many different ways and a universally accepted evaluation methodology does not exist. This survey systematically reviews the evaluation methodologies of papers on obfuscation, a major class of protections against MATE attacks. For 572 papers, we collected 113 aspects of their evaluation methodologies, ranging from sample set types and sizes, over sample treatment, to performed measurements. We provide detailed insights into how the academic state of the art evaluates both the protections and analyses thereon. In summary, there is a clear need for better evaluation methodologies. We identify nine challenges for software protection evaluations, which represent threats to the validity, reproducibility, and interpretation of research results in the context of MATE attacks.

Active Simultaneous Localisation and Mapping (SLAM) is a critical problem in autonomous robotics, enabling robots to navigate to new regions while building an accurate model of their surroundings. Visual SLAM is a popular technique that uses virtual elements to enhance the experience. However, existing frontier-based exploration strategies can lead to a non-optimal path in scenarios where there are multiple frontiers with similar distance. This issue can impact the efficiency and accuracy of Visual SLAM, which is crucial for a wide range of robotic applications, such as search and rescue, exploration, and mapping. To address this issue, this research combines both an existing Visual-Graph SLAM known as ExploreORB with reinforcement learning. The proposed algorithm allows the robot to learn and optimize exploration routes through a reward-based system to create an accurate map of the environment with proper frontier selection. Frontier-based exploration is used to detect unexplored areas, while reinforcement learning optimizes the robot's movement by assigning rewards for optimal frontier points. Graph SLAM is then used to integrate the robot's sensory data and build an accurate map of the environment. The proposed algorithm aims to improve the efficiency and accuracy of ExploreORB by optimizing the exploration process of frontiers to build a more accurate map. To evaluate the effectiveness of the proposed approach, experiments will be conducted in various virtual environments using Gazebo, a robot simulation software. Results of these experiments will be compared with existing methods to demonstrate the potential of the proposed approach as an optimal solution for SLAM in autonomous robotics.

Off-policy evaluation (OPE) aims to estimate the benefit of following a counterfactual sequence of actions, given data collected from executed sequences. However, existing OPE estimators often exhibit high bias and high variance in problems involving large, combinatorial action spaces. We investigate how to mitigate this issue using factored action spaces i.e. expressing each action as a combination of independent sub-actions from smaller action spaces. This approach facilitates a finer-grained analysis of how actions differ in their effects. In this work, we propose a new family of "decomposed" importance sampling (IS) estimators based on factored action spaces. Given certain assumptions on the underlying problem structure, we prove that the decomposed IS estimators have less variance than their original non-decomposed versions, while preserving the property of zero bias. Through simulations, we empirically verify our theoretical results, probing the validity of various assumptions. Provided with a technique that can derive the action space factorisation for a given problem, our work shows that OPE can be improved "for free" by utilising this inherent problem structure.

Human Pose Estimation is a thoroughly researched problem; however, most datasets focus on the side and front-view scenarios. We address the limitation by proposing a novel approach that tackles the challenges posed by extreme viewpoints and poses. We introduce a new method for synthetic data generation - RePoGen, RarE POses GENerator - with comprehensive control over pose and view to augment the COCO dataset. Experiments on a new dataset of real images show that adding RePoGen data to the COCO surpasses previous attempts to top-view pose estimation and significantly improves performance on the bottom-view dataset. Through an extensive ablation study on both the top and bottom view data, we elucidate the contributions of methodological choices and demonstrate improved performance. The code and the datasets are available on the project website.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司