Alpha-XR Mission conducted by XR Lab PJAIT focused on research related to individual and crew well-being and participatory team collaboration in ICE (isolated, confined and extreme) conditions. In this two-week mission within an analog space habitat, collaboration, objective execution and leisure was facilitated and studied by virtual reality (VR) tools. The mission commander and first officer, both experienced with virtual reality, took part in daily briefings with mission control. In the first week the briefings were voice-only conducted via a channel on Discord. During the following week last briefings were conducted in VR, using Horizon Workrooms. This qualitative pilot study employing participatory observation revealed that VR facilitates communication, especially on complex problems and experiences, providing the sense of emotional connection and shared understanding, that may be lacking in audio calls. The study points to the need to further explore VR-facilitated communication in high-stake environments as it may improve relationships, well-being, and communication outcomes.
The automatic extraction of information from Cyber Threat Intelligence (CTI) reports is crucial in risk management. The increased frequency of the publications of these reports has led researchers to develop new systems for automatically recovering different types of entities and relations from textual data. Most state-of-the-art models leverage Natural Language Processing (NLP) techniques, which perform greatly in extracting a few types of entities at a time but cannot detect heterogeneous data or their relations. Furthermore, several paradigms, such as STIX, have become de facto standards in the CTI community and dictate a formal categorization of different entities and relations to enable organizations to share data consistently. This paper presents STIXnet, the first solution for the automated extraction of all STIX entities and relationships in CTI reports. Through the use of NLP techniques and an interactive Knowledge Base (KB) of entities, our approach obtains F1 scores comparable to state-of-the-art models for entity extraction (0.916) and relation extraction (0.724) while considering significantly more types of entities and relations. Moreover, STIXnet constitutes a modular and extensible framework that manages and coordinates different modules to merge their contributions uniquely and exhaustively. With our approach, researchers and organizations can extend their Information Extraction (IE) capabilities by integrating the efforts of several techniques without needing to develop new tools from scratch.
Causal inference plays a vital role in diverse domains like epidemiology, healthcare, and economics. De-confounding and counterfactual prediction in observational data has emerged as a prominent concern in causal inference research. While existing models tackle observed confounders, the presence of unobserved confounders remains a significant challenge, distorting causal inference and impacting counterfactual outcome accuracy. To address this, we propose a novel variational learning model of unobserved confounders for counterfactual inference (VLUCI), which generates the posterior distribution of unobserved confounders. VLUCI relaxes the unconfoundedness assumption often overlooked by most causal inference methods. By disentangling observed and unobserved confounders, VLUCI constructs a doubly variational inference model to approximate the distribution of unobserved confounders, which are used for inferring more accurate counterfactual outcomes. Extensive experiments on synthetic and semi-synthetic datasets demonstrate VLUCI's superior performance in inferring unobserved confounders. It is compatible with state-of-the-art counterfactual inference models, significantly improving inference accuracy at both group and individual levels. Additionally, VLUCI provides confidence intervals for counterfactual outcomes, aiding decision-making in risk-sensitive domains. We further clarify the considerations when applying VLUCI to cases where unobserved confounders don't strictly conform to our model assumptions using the public IHDP dataset as an example, highlighting the practical advantages of VLUCI.
Weakly Supervised Semantic Segmentation (WSSS) relying only on image-level supervision is a promising approach to deal with the need for Segmentation networks, especially for generating a large number of pixel-wise masks in a given dataset. However, most state-of-the-art image-level WSSS techniques lack an understanding of the geometric features embedded in the images since the network cannot derive any object boundary information from just image-level labels. We define a boundary here as the line separating an object and its background, or two different objects. To address this drawback, we are proposing our novel ReFit framework, which deploys state-of-the-art class activation maps combined with various post-processing techniques in order to achieve fine-grained higher-accuracy segmentation masks. To achieve this, we investigate a state-of-the-art unsupervised segmentation network that can be used to construct a boundary map, which enables ReFit to predict object locations with sharper boundaries. By applying our method to WSSS predictions, we achieved up to 10% improvement over the current state-of-the-art WSSS methods for medical imaging. The framework is open-source, to ensure that our results are reproducible, and accessible online at //github.com/bharathprabakaran/ReFit.
Large Language Models (LLMs) pretrained on massive corpora exhibit remarkable capabilities across a wide range of tasks, however, the attention given to non-English languages has been limited in this field of research. To address this gap and assess the proficiency of language models in the Korean language and culture, we present HAE-RAE Bench, covering 6 tasks including vocabulary, history, and general knowledge. Our evaluation of language models on this benchmark highlights the potential advantages of employing Large Language-Specific Models(LLSMs) over a comprehensive, universal model like GPT-3.5. Remarkably, our study reveals that models approximately 13 times smaller than GPT-3.5 can exhibit similar performance levels in terms of language-specific knowledge retrieval. This observation underscores the importance of homogeneous corpora for training professional-level language-specific models. On the contrary, we also observe a perplexing performance dip in these smaller LMs when they are tasked to generate structured answers.
This study presents insights from interviews with nineteen Knowledge Graph (KG) practitioners who work in both enterprise and academic settings on a wide variety of use cases. Through this study, we identify critical challenges experienced by KG practitioners when creating, exploring, and analyzing KGs that could be alleviated through visualization design. Our findings reveal three major personas among KG practitioners - KG Builders, Analysts, and Consumers - each of whom have their own distinct expertise and needs. We discover that KG Builders would benefit from schema enforcers, while KG Analysts need customizable query builders that provide interim query results. For KG Consumers, we identify a lack of efficacy for node-link diagrams, and the need for tailored domain-specific visualizations to promote KG adoption and comprehension. Lastly, we find that implementing KGs effectively in practice requires both technical and social solutions that are not addressed with current tools, technologies, and collaborative workflows. From the analysis of our interviews, we distill several visualization research directions to improve KG usability, including knowledge cards that balance digestibility and discoverability, timeline views to track temporal changes, interfaces that support organic discovery, and semantic explanations for AI and machine learning predictions.
Neural Machine Translation (NMT) models have become successful, but their performance remains poor when translating on new domains with a limited number of data. In this paper, we present a novel approach Epi-Curriculum to address low-resource domain adaptation (DA), which contains a new episodic training framework along with denoised curriculum learning. Our episodic training framework enhances the model's robustness to domain shift by episodically exposing the encoder/decoder to an inexperienced decoder/encoder. The denoised curriculum learning filters the noised data and further improves the model's adaptability by gradually guiding the learning process from easy to more difficult tasks. Experiments on English-German and English-Romanian translation show that: (i) Epi-Curriculum improves both model's robustness and adaptability in seen and unseen domains; (ii) Our episodic training framework enhances the encoder and decoder's robustness to domain shift.
To empower online grocery shoppers in making nutritionally and environmentally informed decisions, we investigate the efficacy of the Scale-Score, a label combining nutritional and environmental information to highlight a product's benefit to both the consumer's and the planet's health, without obscuring either information. We conducted an experimental study in a mock online grocery environment, and assessed label efficacy. We find that the Scale-Score supports nutritious purchases, yet needs improving regarding sustainability support. Our research shows first insights into design considerations and performance of a combined yet disjoint food label.
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.
Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.