{mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cardiorespiratory fitness is an established predictor of metabolic disease and mortality. Fitness is directly measured as maximal oxygen consumption (VO$_{2}max$), or indirectly assessed using heart rate responses to standard exercise tests. However, such testing is costly and burdensome because it requires specialized equipment such as treadmills and oxygen masks, limiting its utility. Modern wearables capture dynamic real-world data which could improve fitness prediction. In this work, we design algorithms and models that convert raw wearable sensor data into cardiorespiratory fitness estimates. We validate these estimates' ability to capture fitness profiles in free-living conditions using the Fenland Study (N=11,059), along with its longitudinal cohort (N=2,675), and a third external cohort using the UK Biobank Validation Study (N=181) who underwent maximal VO$_{2}max$ testing, the gold standard measurement of fitness. Our results show that the combination of wearables and other biomarkers as inputs to neural networks yields a strong correlation to ground truth in a holdout sample (r = 0.82, 95CI 0.80-0.83), outperforming other approaches and models and detects fitness change over time (e.g., after 7 years). We also show how the model's latent space can be used for fitness-aware patient subtyping paving the way to scalable interventions and personalized trial recruitment. These results demonstrate the value of wearables for fitness estimation that today can be measured only with laboratory tests.

相關內容

可穿戴設備即直接穿在身上,或是整合到用戶的衣服或配件的一種便攜式設備。可穿戴設備不僅僅是一種硬件設備,更是通過軟件支持以及數據交互、云端交互來實現強大的功能,可穿戴設備將會對我們的生活、感知帶來很大的轉變。

We propose a monitoring strategy for efficient and robust estimation of disease prevalence and case numbers within closed and enumerated populations such as schools, workplaces, or retirement communities. The proposed design relies largely on voluntary testing, notoriously biased (e.g., in the case of COVID-19) due to non-representative sampling. The approach yields unbiased and comparatively precise estimates with no assumptions about factors underlying selection of individuals for voluntary testing, building on the strength of what can be a small random sampling component. This component unlocks a previously proposed "anchor stream" estimator, a well-calibrated alternative to classical capture-recapture (CRC) estimators based on two data streams. We show here that this estimator is equivalent to a direct standardization based on "capture", i.e., selection (or not) by the voluntary testing program, made possible by means of a key parameter identified by design. This equivalency simultaneously allows for novel two-stream CRC-like estimation of general means (e.g., of continuous variables such as antibody levels or biomarkers). For inference, we propose adaptations of a Bayesian credible interval when estimating case counts and bootstrapping when estimating means of continuous variables. We use simulations to demonstrate significant precision benefits relative to random sampling alone.

Causal effects may vary among individuals and can even be of opposite signs. When significant effect heterogeneity exists, the population average causal effect might be uninformative for an individual. Due to the fundamental problem of causality, individual causal effects (ICEs) cannot be retrieved from cross-sectional data. However, in crossover studies, it is accepted that ICEs can be estimated under the assumptions of no carryover effects and time invariance of potential outcomes. A generic potential-outcome formulation with appropriate statistical assumptions to identify ICEs is lacking for other longitudinal data with time-varying exposures. We present a general framework for causal effect heterogeneity in which individual-specific effect modification is parameterized with a latent variable, the receptiveness factor. If the exposure varies over time, then the repeated measurements contain information on an individual's level of this receptiveness factor. Therefore, we study the conditional distribution of the ICE given all an individual's factual information. This novel conditional random variable is called the cross-world causal effect (CWCE). For known causal structures and time-varying exposures, the variability of the CWCE reduces with an increasing number of repeated measurements. The CWCE becomes identifiable from observational data under the causal assumption of cross-world similarity of individual-effect modification (i.e. there exists an exposure strategy whose effect is affected by all latent causes). We illustrate the theory with examples in which the cause-effect relations can be parameterized as generalized linear mixed assignments.

Fires have destructive power when they break out and affect their surroundings on a devastatingly large scale. The best way to minimize their damage is to detect the fire as quickly as possible before it has a chance to grow. Accordingly, this work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream. Object detection has made giant leaps in speed and accuracy over the last six years, making real-time detection feasible. To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector. Our focus, driven by a collaborating industrial partner, is to implement our system in an industrial warehouse setting, which is characterized by high ceilings. A drawback of traditional smoke detectors in this setup is that the smoke has to rise to a sufficient height. The AI models brought forward in this research managed to outperform these detectors by a significant amount of time, providing precious anticipation that could help to minimize the effects of fires further.

Mathematical models are essential for understanding and making predictions about systems arising in nature and engineering. Yet, mathematical models are a simplification of true phenomena, thus making predictions subject to uncertainty. Hence, the ability to quantify uncertainties is essential to any modelling framework, enabling the user to assess the importance of certain parameters on quantities of interest and have control over the quality of the model output by providing a rigorous understanding of uncertainty. Peridynamic models are a particular class of mathematical models that have proven to be remarkably accurate and robust for a large class of material failure problems. However, the high computational expense of peridynamic models remains a major limitation, hindering outer-loop applications that require a large number of simulations, for example, uncertainty quantification. This contribution provides a framework to make such computations feasible. By employing a Multilevel Monte Carlo (MLMC) framework, where the majority of simulations are performed using a coarse mesh, and performing relatively few simulations using a fine mesh, a significant reduction in computational cost can be realised, and statistics of structural failure can be estimated. The results show a speed-up factor of 16x over a standard Monte Carlo estimator, enabling the forward propagation of uncertain parameters in a computationally expensive peridynamic model. Furthermore, the multilevel method provides an estimate of both the discretisation error and sampling error, thus improving the confidence in numerical predictions. The performance of the approach is demonstrated through an examination of the statistical size effect in quasi-brittle materials.

Prediction algorithms that quantify the expected benefit of a given treatment conditional on patient characteristics can critically inform medical decisions. Quantifying the performance of such metrics is an active area of research. A recently proposed metric, the concordance statistic for benefit (cfb), evaluates the discriminatory ability of a treatment benefit predictor by directly extending the concept of the concordance statistic from a risk model for a binary outcome to a model for treatment benefit. In this work, we scrutinize cfb on multiple fronts. Through numerical examples and theoretical developments, we show that cfb is not a proper scoring rule. We also show that it is sensitive to the unestimable correlation between counterfactual outcomes, as well as to the matching algorithms for creating pairs. We argue that measures of statistical dispersion applied to predicted benefit do not suffer from these issues and can be an alternative metric for the discriminatory performance of treatment benefit predictors.

Missing data can lead to inefficiencies and biases in analyses, in particular when data are missing not at random (MNAR). It is thus vital to understand and correctly identify the missing data mechanism. Recovering missing values through a follow up sample allows researchers to conduct hypothesis tests for MNAR, which are not possible when using only the original incomplete data. Investigating how properties of these tests are affected by the follow up sample design is little explored in the literature. Our results provide comprehensive insight into the properties of one such test, based on the commonly used selection model framework. We determine conditions for recovery samples that allow the test to be applied appropriately and effectively, i.e. with known Type I error rates and optimized with respect to power. We thus provide an integrated framework for testing for the presence of MNAR and designing follow up samples in an efficient cost-effective way. The performance of our methodology is evaluated through simulation studies as well as on a real data sample.

A platoon refers to a group of vehicles traveling together in very close proximity. It has received significant attention from the autonomous vehicle research community due to its strong potential to significantly enhance fuel efficiency, driving safety, and driver comfort. Despite these advantages, recent research has revealed a detrimental effect of the extremely small intra-platoon gap on traffic flow for highway on-ramp merging. While existing control-based methods allow for adaptation of the intra-platoon gap to improve traffic flow, making an optimal control decision under the complex dynamics of traffic conditions remains a significant challenge due to the massive computational complexity. To this end, we present the design, implementation, and evaluation of a novel reinforcement learning framework that adaptively adjusts the intra-platoon gap of an individual platoon member to maximize traffic flow in response to dynamically changing, complex traffic conditions for highway on-ramp merging. The state space of the framework is carefully designed in consultation with the transportation literature to incorporate critical traffic parameters relevant to merging efficiency. A deep deterministic policy gradient algorithm is adopted to account for the continuous action space to ensure precise and continuous adjustment of the intra-platoon gap. An extensive simulation study demonstrates the effectiveness of the reinforcement learning-based approach for significantly improving traffic flow in various highway merging scenarios.

Conformal prediction constructs a confidence set for an unobserved response of a feature vector based on previous identically distributed and exchangeable observations of responses and features. It has a coverage guarantee at any nominal level without additional assumptions on their distribution. Its computation deplorably requires a refitting procedure for all replacement candidates of the target response. In regression settings, this corresponds to an infinite number of model fits. Apart from relatively simple estimators that can be written as pieces of linear function of the response, efficiently computing such sets is difficult, and is still considered as an open problem. We exploit the fact that, \emph{often}, conformal prediction sets are intervals whose boundaries can be efficiently approximated by classical root-finding algorithms. We investigate how this approach can overcome many limitations of formerly used strategies; we discuss its complexity and drawbacks.

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司
{2}max$), or indirectly assessed using heart rate responses to standard exercise tests. However, such testing is costly and burdensome because it requires specialized equipment such as treadmills and oxygen masks, limiting its utility. Modern wearables capture dynamic real-world data which could improve fitness prediction. In this work, we design algorithms and models that convert raw wearable sensor data into cardiorespiratory fitness estimates. We validate these estimates' ability to capture fitness profiles in free-living conditions using the Fenland Study (N=11,059), along with its longitudinal cohort (N=2,675), and a third external cohort using the UK Biobank Validation Study (N=181) who underwent maximal VO 国产一国产一级毛片A久久久,国产男女无套内谢免费视频 {mayi_des}

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cardiorespiratory fitness is an established predictor of metabolic disease and mortality. Fitness is directly measured as maximal oxygen consumption (VO$_{2}max$), or indirectly assessed using heart rate responses to standard exercise tests. However, such testing is costly and burdensome because it requires specialized equipment such as treadmills and oxygen masks, limiting its utility. Modern wearables capture dynamic real-world data which could improve fitness prediction. In this work, we design algorithms and models that convert raw wearable sensor data into cardiorespiratory fitness estimates. We validate these estimates' ability to capture fitness profiles in free-living conditions using the Fenland Study (N=11,059), along with its longitudinal cohort (N=2,675), and a third external cohort using the UK Biobank Validation Study (N=181) who underwent maximal VO$_{2}max$ testing, the gold standard measurement of fitness. Our results show that the combination of wearables and other biomarkers as inputs to neural networks yields a strong correlation to ground truth in a holdout sample (r = 0.82, 95CI 0.80-0.83), outperforming other approaches and models and detects fitness change over time (e.g., after 7 years). We also show how the model's latent space can be used for fitness-aware patient subtyping paving the way to scalable interventions and personalized trial recruitment. These results demonstrate the value of wearables for fitness estimation that today can be measured only with laboratory tests.

相關內容

可穿戴設備即直接穿在身上,或是整合到用戶的衣服或配件的一種便攜式設備。可穿戴設備不僅僅是一種硬件設備,更是通過軟件支持以及數據交互、云端交互來實現強大的功能,可穿戴設備將會對我們的生活、感知帶來很大的轉變。

We propose a monitoring strategy for efficient and robust estimation of disease prevalence and case numbers within closed and enumerated populations such as schools, workplaces, or retirement communities. The proposed design relies largely on voluntary testing, notoriously biased (e.g., in the case of COVID-19) due to non-representative sampling. The approach yields unbiased and comparatively precise estimates with no assumptions about factors underlying selection of individuals for voluntary testing, building on the strength of what can be a small random sampling component. This component unlocks a previously proposed "anchor stream" estimator, a well-calibrated alternative to classical capture-recapture (CRC) estimators based on two data streams. We show here that this estimator is equivalent to a direct standardization based on "capture", i.e., selection (or not) by the voluntary testing program, made possible by means of a key parameter identified by design. This equivalency simultaneously allows for novel two-stream CRC-like estimation of general means (e.g., of continuous variables such as antibody levels or biomarkers). For inference, we propose adaptations of a Bayesian credible interval when estimating case counts and bootstrapping when estimating means of continuous variables. We use simulations to demonstrate significant precision benefits relative to random sampling alone.

Causal effects may vary among individuals and can even be of opposite signs. When significant effect heterogeneity exists, the population average causal effect might be uninformative for an individual. Due to the fundamental problem of causality, individual causal effects (ICEs) cannot be retrieved from cross-sectional data. However, in crossover studies, it is accepted that ICEs can be estimated under the assumptions of no carryover effects and time invariance of potential outcomes. A generic potential-outcome formulation with appropriate statistical assumptions to identify ICEs is lacking for other longitudinal data with time-varying exposures. We present a general framework for causal effect heterogeneity in which individual-specific effect modification is parameterized with a latent variable, the receptiveness factor. If the exposure varies over time, then the repeated measurements contain information on an individual's level of this receptiveness factor. Therefore, we study the conditional distribution of the ICE given all an individual's factual information. This novel conditional random variable is called the cross-world causal effect (CWCE). For known causal structures and time-varying exposures, the variability of the CWCE reduces with an increasing number of repeated measurements. The CWCE becomes identifiable from observational data under the causal assumption of cross-world similarity of individual-effect modification (i.e. there exists an exposure strategy whose effect is affected by all latent causes). We illustrate the theory with examples in which the cause-effect relations can be parameterized as generalized linear mixed assignments.

Fires have destructive power when they break out and affect their surroundings on a devastatingly large scale. The best way to minimize their damage is to detect the fire as quickly as possible before it has a chance to grow. Accordingly, this work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream. Object detection has made giant leaps in speed and accuracy over the last six years, making real-time detection feasible. To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector. Our focus, driven by a collaborating industrial partner, is to implement our system in an industrial warehouse setting, which is characterized by high ceilings. A drawback of traditional smoke detectors in this setup is that the smoke has to rise to a sufficient height. The AI models brought forward in this research managed to outperform these detectors by a significant amount of time, providing precious anticipation that could help to minimize the effects of fires further.

Mathematical models are essential for understanding and making predictions about systems arising in nature and engineering. Yet, mathematical models are a simplification of true phenomena, thus making predictions subject to uncertainty. Hence, the ability to quantify uncertainties is essential to any modelling framework, enabling the user to assess the importance of certain parameters on quantities of interest and have control over the quality of the model output by providing a rigorous understanding of uncertainty. Peridynamic models are a particular class of mathematical models that have proven to be remarkably accurate and robust for a large class of material failure problems. However, the high computational expense of peridynamic models remains a major limitation, hindering outer-loop applications that require a large number of simulations, for example, uncertainty quantification. This contribution provides a framework to make such computations feasible. By employing a Multilevel Monte Carlo (MLMC) framework, where the majority of simulations are performed using a coarse mesh, and performing relatively few simulations using a fine mesh, a significant reduction in computational cost can be realised, and statistics of structural failure can be estimated. The results show a speed-up factor of 16x over a standard Monte Carlo estimator, enabling the forward propagation of uncertain parameters in a computationally expensive peridynamic model. Furthermore, the multilevel method provides an estimate of both the discretisation error and sampling error, thus improving the confidence in numerical predictions. The performance of the approach is demonstrated through an examination of the statistical size effect in quasi-brittle materials.

Prediction algorithms that quantify the expected benefit of a given treatment conditional on patient characteristics can critically inform medical decisions. Quantifying the performance of such metrics is an active area of research. A recently proposed metric, the concordance statistic for benefit (cfb), evaluates the discriminatory ability of a treatment benefit predictor by directly extending the concept of the concordance statistic from a risk model for a binary outcome to a model for treatment benefit. In this work, we scrutinize cfb on multiple fronts. Through numerical examples and theoretical developments, we show that cfb is not a proper scoring rule. We also show that it is sensitive to the unestimable correlation between counterfactual outcomes, as well as to the matching algorithms for creating pairs. We argue that measures of statistical dispersion applied to predicted benefit do not suffer from these issues and can be an alternative metric for the discriminatory performance of treatment benefit predictors.

Missing data can lead to inefficiencies and biases in analyses, in particular when data are missing not at random (MNAR). It is thus vital to understand and correctly identify the missing data mechanism. Recovering missing values through a follow up sample allows researchers to conduct hypothesis tests for MNAR, which are not possible when using only the original incomplete data. Investigating how properties of these tests are affected by the follow up sample design is little explored in the literature. Our results provide comprehensive insight into the properties of one such test, based on the commonly used selection model framework. We determine conditions for recovery samples that allow the test to be applied appropriately and effectively, i.e. with known Type I error rates and optimized with respect to power. We thus provide an integrated framework for testing for the presence of MNAR and designing follow up samples in an efficient cost-effective way. The performance of our methodology is evaluated through simulation studies as well as on a real data sample.

A platoon refers to a group of vehicles traveling together in very close proximity. It has received significant attention from the autonomous vehicle research community due to its strong potential to significantly enhance fuel efficiency, driving safety, and driver comfort. Despite these advantages, recent research has revealed a detrimental effect of the extremely small intra-platoon gap on traffic flow for highway on-ramp merging. While existing control-based methods allow for adaptation of the intra-platoon gap to improve traffic flow, making an optimal control decision under the complex dynamics of traffic conditions remains a significant challenge due to the massive computational complexity. To this end, we present the design, implementation, and evaluation of a novel reinforcement learning framework that adaptively adjusts the intra-platoon gap of an individual platoon member to maximize traffic flow in response to dynamically changing, complex traffic conditions for highway on-ramp merging. The state space of the framework is carefully designed in consultation with the transportation literature to incorporate critical traffic parameters relevant to merging efficiency. A deep deterministic policy gradient algorithm is adopted to account for the continuous action space to ensure precise and continuous adjustment of the intra-platoon gap. An extensive simulation study demonstrates the effectiveness of the reinforcement learning-based approach for significantly improving traffic flow in various highway merging scenarios.

Conformal prediction constructs a confidence set for an unobserved response of a feature vector based on previous identically distributed and exchangeable observations of responses and features. It has a coverage guarantee at any nominal level without additional assumptions on their distribution. Its computation deplorably requires a refitting procedure for all replacement candidates of the target response. In regression settings, this corresponds to an infinite number of model fits. Apart from relatively simple estimators that can be written as pieces of linear function of the response, efficiently computing such sets is difficult, and is still considered as an open problem. We exploit the fact that, \emph{often}, conformal prediction sets are intervals whose boundaries can be efficiently approximated by classical root-finding algorithms. We investigate how this approach can overcome many limitations of formerly used strategies; we discuss its complexity and drawbacks.

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司
{2}max$ testing, the gold standard measurement of fitness. Our results show that the combination of wearables and other biomarkers as inputs to neural networks yields a strong correlation to ground truth in a holdout sample (r = 0.82, 95CI 0.80-0.83), outperforming other approaches and models and detects fitness change over time (e.g., after 7 years). We also show how the model's latent space can be used for fitness-aware patient subtyping paving the way to scalable interventions and personalized trial recruitment. These results demonstrate the value of wearables for fitness estimation that today can be measured only with laboratory tests. ">

亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cardiorespiratory fitness is an established predictor of metabolic disease and mortality. Fitness is directly measured as maximal oxygen consumption (VO$_{2}max$), or indirectly assessed using heart rate responses to standard exercise tests. However, such testing is costly and burdensome because it requires specialized equipment such as treadmills and oxygen masks, limiting its utility. Modern wearables capture dynamic real-world data which could improve fitness prediction. In this work, we design algorithms and models that convert raw wearable sensor data into cardiorespiratory fitness estimates. We validate these estimates' ability to capture fitness profiles in free-living conditions using the Fenland Study (N=11,059), along with its longitudinal cohort (N=2,675), and a third external cohort using the UK Biobank Validation Study (N=181) who underwent maximal VO$_{2}max$ testing, the gold standard measurement of fitness. Our results show that the combination of wearables and other biomarkers as inputs to neural networks yields a strong correlation to ground truth in a holdout sample (r = 0.82, 95CI 0.80-0.83), outperforming other approaches and models and detects fitness change over time (e.g., after 7 years). We also show how the model's latent space can be used for fitness-aware patient subtyping paving the way to scalable interventions and personalized trial recruitment. These results demonstrate the value of wearables for fitness estimation that today can be measured only with laboratory tests.

相關內容

可穿戴設備即直接穿在身上,或是整合到用戶的衣服或配件的一種便攜式設備。可穿戴設備不僅僅是一種硬件設備,更是通過軟件支持以及數據交互、云端交互來實現強大的功能,可穿戴設備將會對我們的生活、感知帶來很大的轉變。

We propose a monitoring strategy for efficient and robust estimation of disease prevalence and case numbers within closed and enumerated populations such as schools, workplaces, or retirement communities. The proposed design relies largely on voluntary testing, notoriously biased (e.g., in the case of COVID-19) due to non-representative sampling. The approach yields unbiased and comparatively precise estimates with no assumptions about factors underlying selection of individuals for voluntary testing, building on the strength of what can be a small random sampling component. This component unlocks a previously proposed "anchor stream" estimator, a well-calibrated alternative to classical capture-recapture (CRC) estimators based on two data streams. We show here that this estimator is equivalent to a direct standardization based on "capture", i.e., selection (or not) by the voluntary testing program, made possible by means of a key parameter identified by design. This equivalency simultaneously allows for novel two-stream CRC-like estimation of general means (e.g., of continuous variables such as antibody levels or biomarkers). For inference, we propose adaptations of a Bayesian credible interval when estimating case counts and bootstrapping when estimating means of continuous variables. We use simulations to demonstrate significant precision benefits relative to random sampling alone.

Causal effects may vary among individuals and can even be of opposite signs. When significant effect heterogeneity exists, the population average causal effect might be uninformative for an individual. Due to the fundamental problem of causality, individual causal effects (ICEs) cannot be retrieved from cross-sectional data. However, in crossover studies, it is accepted that ICEs can be estimated under the assumptions of no carryover effects and time invariance of potential outcomes. A generic potential-outcome formulation with appropriate statistical assumptions to identify ICEs is lacking for other longitudinal data with time-varying exposures. We present a general framework for causal effect heterogeneity in which individual-specific effect modification is parameterized with a latent variable, the receptiveness factor. If the exposure varies over time, then the repeated measurements contain information on an individual's level of this receptiveness factor. Therefore, we study the conditional distribution of the ICE given all an individual's factual information. This novel conditional random variable is called the cross-world causal effect (CWCE). For known causal structures and time-varying exposures, the variability of the CWCE reduces with an increasing number of repeated measurements. The CWCE becomes identifiable from observational data under the causal assumption of cross-world similarity of individual-effect modification (i.e. there exists an exposure strategy whose effect is affected by all latent causes). We illustrate the theory with examples in which the cause-effect relations can be parameterized as generalized linear mixed assignments.

Fires have destructive power when they break out and affect their surroundings on a devastatingly large scale. The best way to minimize their damage is to detect the fire as quickly as possible before it has a chance to grow. Accordingly, this work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream. Object detection has made giant leaps in speed and accuracy over the last six years, making real-time detection feasible. To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector. Our focus, driven by a collaborating industrial partner, is to implement our system in an industrial warehouse setting, which is characterized by high ceilings. A drawback of traditional smoke detectors in this setup is that the smoke has to rise to a sufficient height. The AI models brought forward in this research managed to outperform these detectors by a significant amount of time, providing precious anticipation that could help to minimize the effects of fires further.

Mathematical models are essential for understanding and making predictions about systems arising in nature and engineering. Yet, mathematical models are a simplification of true phenomena, thus making predictions subject to uncertainty. Hence, the ability to quantify uncertainties is essential to any modelling framework, enabling the user to assess the importance of certain parameters on quantities of interest and have control over the quality of the model output by providing a rigorous understanding of uncertainty. Peridynamic models are a particular class of mathematical models that have proven to be remarkably accurate and robust for a large class of material failure problems. However, the high computational expense of peridynamic models remains a major limitation, hindering outer-loop applications that require a large number of simulations, for example, uncertainty quantification. This contribution provides a framework to make such computations feasible. By employing a Multilevel Monte Carlo (MLMC) framework, where the majority of simulations are performed using a coarse mesh, and performing relatively few simulations using a fine mesh, a significant reduction in computational cost can be realised, and statistics of structural failure can be estimated. The results show a speed-up factor of 16x over a standard Monte Carlo estimator, enabling the forward propagation of uncertain parameters in a computationally expensive peridynamic model. Furthermore, the multilevel method provides an estimate of both the discretisation error and sampling error, thus improving the confidence in numerical predictions. The performance of the approach is demonstrated through an examination of the statistical size effect in quasi-brittle materials.

Prediction algorithms that quantify the expected benefit of a given treatment conditional on patient characteristics can critically inform medical decisions. Quantifying the performance of such metrics is an active area of research. A recently proposed metric, the concordance statistic for benefit (cfb), evaluates the discriminatory ability of a treatment benefit predictor by directly extending the concept of the concordance statistic from a risk model for a binary outcome to a model for treatment benefit. In this work, we scrutinize cfb on multiple fronts. Through numerical examples and theoretical developments, we show that cfb is not a proper scoring rule. We also show that it is sensitive to the unestimable correlation between counterfactual outcomes, as well as to the matching algorithms for creating pairs. We argue that measures of statistical dispersion applied to predicted benefit do not suffer from these issues and can be an alternative metric for the discriminatory performance of treatment benefit predictors.

Missing data can lead to inefficiencies and biases in analyses, in particular when data are missing not at random (MNAR). It is thus vital to understand and correctly identify the missing data mechanism. Recovering missing values through a follow up sample allows researchers to conduct hypothesis tests for MNAR, which are not possible when using only the original incomplete data. Investigating how properties of these tests are affected by the follow up sample design is little explored in the literature. Our results provide comprehensive insight into the properties of one such test, based on the commonly used selection model framework. We determine conditions for recovery samples that allow the test to be applied appropriately and effectively, i.e. with known Type I error rates and optimized with respect to power. We thus provide an integrated framework for testing for the presence of MNAR and designing follow up samples in an efficient cost-effective way. The performance of our methodology is evaluated through simulation studies as well as on a real data sample.

A platoon refers to a group of vehicles traveling together in very close proximity. It has received significant attention from the autonomous vehicle research community due to its strong potential to significantly enhance fuel efficiency, driving safety, and driver comfort. Despite these advantages, recent research has revealed a detrimental effect of the extremely small intra-platoon gap on traffic flow for highway on-ramp merging. While existing control-based methods allow for adaptation of the intra-platoon gap to improve traffic flow, making an optimal control decision under the complex dynamics of traffic conditions remains a significant challenge due to the massive computational complexity. To this end, we present the design, implementation, and evaluation of a novel reinforcement learning framework that adaptively adjusts the intra-platoon gap of an individual platoon member to maximize traffic flow in response to dynamically changing, complex traffic conditions for highway on-ramp merging. The state space of the framework is carefully designed in consultation with the transportation literature to incorporate critical traffic parameters relevant to merging efficiency. A deep deterministic policy gradient algorithm is adopted to account for the continuous action space to ensure precise and continuous adjustment of the intra-platoon gap. An extensive simulation study demonstrates the effectiveness of the reinforcement learning-based approach for significantly improving traffic flow in various highway merging scenarios.

Conformal prediction constructs a confidence set for an unobserved response of a feature vector based on previous identically distributed and exchangeable observations of responses and features. It has a coverage guarantee at any nominal level without additional assumptions on their distribution. Its computation deplorably requires a refitting procedure for all replacement candidates of the target response. In regression settings, this corresponds to an infinite number of model fits. Apart from relatively simple estimators that can be written as pieces of linear function of the response, efficiently computing such sets is difficult, and is still considered as an open problem. We exploit the fact that, \emph{often}, conformal prediction sets are intervals whose boundaries can be efficiently approximated by classical root-finding algorithms. We investigate how this approach can overcome many limitations of formerly used strategies; we discuss its complexity and drawbacks.

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司