An inverse nonequispaced fast Fourier transform (iNFFT) is a fast algorithm to compute the Fourier coefficients of a trigonometric polynomial from nonequispaced sampling data. However, various applications such as magnetic resonance imaging (MRI) are concerned with the analogous problem for bandlimited functions, i.e., the reconstruction of point evaluations of the Fourier transform from given measurements of the bandlimited function. In this paper, we review an approach yielding exact reconstruction for trigonometric polynomials up to a certain degree, and extend this technique to the setting of bandlimited functions. Here we especially focus on methods computing a diagonal matrix of weights needed for sampling density compensation.
In this paper, we propose the Minimum Regularized Covariance Trace (MRCT) estimator, a novel method for robust covariance estimation and functional outlier detection. The MRCT estimator employs a subset-based approach that prioritizes subsets exhibiting greater centrality based on the generalization of the Mahalanobis distance, resulting in a fast-MCD type algorithm. Notably, the MRCT estimator handles high-dimensional data sets without the need for preprocessing or dimension reduction techniques, due to the internal smoothening whose amount is determined by the regularization parameter $\alpha > 0$. The selection of the regularization parameter $\alpha$ is automated. The proposed method adapts seamlessly to sparsely observed data by working directly with the finite matrix of basis coefficients. An extensive simulation study demonstrates the efficacy of the MRCT estimator in terms of robust covariance estimation and automated outlier detection, emphasizing the balance between noise exclusion and signal preservation achieved through appropriate selection of $\alpha$. The method converges fast in practice and performs favorably when compared to other functional outlier detection methods.
Inspired by the multiple-exposure fusion approach in computational photography, recently, several practitioners have explored the idea of high dynamic range (HDR) X-ray imaging and tomography. While establishing promising results, these approaches inherit the limitations of multiple-exposure fusion strategy. To overcome these disadvantages, the modulo Radon transform (MRT) has been proposed. The MRT is based on a co-design of hardware and algorithms. In the hardware step, Radon transform projections are folded using modulo non-linearities. Thereon, recovery is performed by algorithmically inverting the folding, thus enabling a single-shot, HDR approach to tomography. The first steps in this topic established rigorous mathematical treatment to the problem of reconstruction from folded projections. This paper takes a step forward by proposing a new, Fourier domain recovery algorithm that is backed by mathematical guarantees. The advantages include recovery at lower sampling rates while being agnostic to modulo threshold, lower computational complexity and empirical robustness to system noise. Beyond numerical simulations, we use prototype modulo ADC based hardware experiments to validate our claims. In particular, we report image recovery based on hardware measurements up to 10 times larger than the sensor's dynamic range while benefiting with lower quantization noise ($\sim$12 dB).
This paper presents a study on the feasibility of using large language models (LLM) for coding with low-resource and domain-specific programming languages that typically lack the amount of data required for effective LLM processing techniques. This study focuses on the econometric scripting language named hansl of the open-source software gretl and employs a proprietary LLM based on GPT-3.5. Our findings suggest that LLMs can be a useful tool for writing, understanding, improving, and documenting gretl code, which includes generating descriptive docstrings for functions and providing precise explanations for abstract and poorly documented econometric code. While the LLM showcased promoting docstring-to-code translation capability, we also identify some limitations, such as its inability to improve certain sections of code and to write accurate unit tests. This study is a step towards leveraging the power of LLMs to facilitate software development in low-resource programming languages and ultimately to lower barriers to entry for their adoption.
In this work, we propose a novel preconditioned Krylov subspace method for solving an optimal control problem of wave equations, after explicitly identifying the asymptotic spectral distribution of the involved sequence of linear coefficient matrices from the optimal control problem. Namely, we first show that the all-at-once system stemming from the wave control problem is associated to a structured coefficient matrix-sequence possessing an eigenvalue distribution. Then, based on such a spectral distribution of which the symbol is explicitly identified, we develop an ideal preconditioner and two parallel-in-time preconditioners for the saddle point system composed of two block Toeplitz matrices. For the ideal preconditioner, we show that the eigenvalues of the preconditioned matrix-sequence all belong to the set $\left(-\frac{3}{2},-\frac{1}{2}\right)\bigcup \left(\frac{1}{2},\frac{3}{2}\right)$ well separated from zero, leading to mesh-independent convergence when the minimal residual method is employed. The proposed {parallel-in-time} preconditioners can be implemented efficiently using fast Fourier transforms or discrete sine transforms, and their effectiveness is theoretically shown in the sense that the eigenvalues of the preconditioned matrix-sequences are clustered around $\pm 1$, which leads to rapid convergence. When these parallel-in-time preconditioners are not fast diagonalizable, we further propose modified versions which can be efficiently inverted. Several numerical examples are reported to verify our derived localization and spectral distribution result and to support the effectiveness of our proposed preconditioners and the related advantages with respect to the relevant literature.
We introduce a new class of numerical schemes which allow for low regularity approximations to the expectation $ \mathbb{E}(|u_{k}(\tau, v^{\eta})|^2)$, where $u_k$ denotes the $k$-th Fourier coefficient of the solution $u$ of the dispersive equation and $ v^{\eta}(x) $ the associated random initial data. This quantity plays an important role in physics, in particular in the study of wave turbulence where one needs to adopt a statistical approach in order to obtain deep insight into the generic long-time behaviour of solutions to dispersive equations. Our new class of schemes is based on Wick's theorem and Feynman diagrams together with a resonance based discretisation (see arXiv:2005.01649) set in a more general context: we introduce a novel combinatorial structure called paired decorated forests which are two decorated trees whose decorations on the leaves come in pair. The character of the scheme draws its inspiration from the treatment of singular stochastic partial differential equations via Regularity Structures. In contrast to classical approaches, we do not discretize the PDE itself, but rather its expectation. This allows us to heavily exploit the optimal resonance structure and underlying gain in regularity on the finite dimensional (discrete) level.
We propose an optimization-based method for reconstructing a time-domain signal from a low-dimensional spectral representation such as a mel-spectrogram. Phase reconstruction has been studied to reconstruct a time-domain signal from the full-band short-time Fourier transform (STFT) magnitude. The Griffin-Lim algorithm (GLA) has been widely used because it relies only on the redundancy of STFT and is applicable to various audio signals. In this paper, we jointly reconstruct the full-band magnitude and phase by considering the bi-level relationships among the time-domain signal, its STFT coefficients, and its mel-spectrogram. The proposed method is formulated as a rigorous optimization problem and estimates the full-band magnitude based on the criterion used in GLA. Our experiments demonstrate the effectiveness of the proposed method on speech, music, and environmental signals.
We consider a class of problems of Discrete Tomography which has been deeply investigated in the past: the reconstruction of convex lattice sets from their horizontal and/or vertical X-rays, i.e. from the number of points in a sequence of consecutive horizontal and vertical lines. The reconstruction of the HV-convex polyominoes works usually in two steps, first the filling step consisting in filling operations, second the convex aggregation of the switching components. We prove three results about the convex aggregation step: (1) The convex aggregation step used for the reconstruction of HV-convex polyominoes does not always provide a solution. The example yielding to this result is called \textit{the bad guy} and disproves a conjecture of the domain. (2) The reconstruction of a digital convex lattice set from only one X-ray can be performed in polynomial time. We prove it by encoding the convex aggregation problem in a Directed Acyclic Graph. (3) With the same strategy, we prove that the reconstruction of fat digital convex sets from their horizontal and vertical X-rays can be solved in polynomial time. Fatness is a property of the digital convex sets regarding the relative position of the left, right, top and bottom points of the set. The complexity of the reconstruction of the lattice sets which are not fat remains an open question.
The recently introduced DeepONet operator-learning framework for PDE control is extended from the results for basic hyperbolic and parabolic PDEs to an advanced hyperbolic class that involves delays on both the state and the system output or input. The PDE backstepping design produces gain functions that are outputs of a nonlinear operator, mapping functions on a spatial domain into functions on a spatial domain, and where this gain-generating operator's inputs are the PDE's coefficients. The operator is approximated with a DeepONet neural network to a degree of accuracy that is provably arbitrarily tight. Once we produce this approximation-theoretic result in infinite dimension, with it we establish stability in closed loop under feedback that employs approximate gains. In addition to supplying such results under full-state feedback, we also develop DeepONet-approximated observers and output-feedback laws and prove their own stabilizing properties under neural operator approximations. With numerical simulations we illustrate the theoretical results and quantify the numerical effort savings, which are of two orders of magnitude, thanks to replacing the numerical PDE solving with the DeepONet.
We study partially linear models in settings where observations are arranged in independent groups but may exhibit within-group dependence. Existing approaches estimate linear model parameters through weighted least squares, with optimal weights (given by the inverse covariance of the response, conditional on the covariates) typically estimated by maximising a (restricted) likelihood from random effects modelling or by using generalised estimating equations. We introduce a new 'sandwich loss' whose population minimiser coincides with the weights of these approaches when the parametric forms for the conditional covariance are well-specified, but can yield arbitrarily large improvements in linear parameter estimation accuracy when they are not. Under relatively mild conditions, our estimated coefficients are asymptotically Gaussian and enjoy minimal variance among estimators with weights restricted to a given class of functions, when user-chosen regression methods are used to estimate nuisance functions. We further expand the class of functional forms for the weights that may be fitted beyond parametric models by leveraging the flexibility of modern machine learning methods within a new gradient boosting scheme for minimising the sandwich loss. We demonstrate the effectiveness of both the sandwich loss and what we call 'sandwich boosting' in a variety of settings with simulated and real-world data.
The ability to envision future states is crucial to informed decision making while interacting with dynamic environments. With cameras providing a prevalent and information rich sensing modality, the problem of predicting future states from image sequences has garnered a lot of attention. Current state of the art methods typically train large parametric models for their predictions. Though often able to predict with accuracy, these models rely on the availability of large training datasets to converge to useful solutions. In this paper we focus on the problem of predicting future images of an image sequence from very little training data. To approach this problem, we use non-parametric models to take a probabilistic approach to image prediction. We generate probability distributions over sequentially predicted images and propagate uncertainty through time to generate a confidence metric for our predictions. Gaussian Processes are used for their data efficiency and ability to readily incorporate new training data online. We showcase our method by successfully predicting future frames of a smooth fluid simulation environment.