亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be highly challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to base Bayesian inference directly on the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimising a transform of the approximate posterior that maximises a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.

相關內容

We propose a posterior for Bayesian Likelihood-Free Inference (LFI) based on generalized Bayesian inference. To define the posterior, we use Scoring Rules (SRs), which evaluate probabilistic models given an observation. In LFI, we can sample from the model but not evaluate the likelihood; hence, we employ SRs which admit unbiased empirical estimates. We use the Energy and Kernel SRs, for which our posterior enjoys consistency in a well-specified setting and outlier robustness. We perform inference with pseudo-marginal (PM) Markov Chain Monte Carlo (MCMC) or stochastic-gradient (SG) MCMC. While PM-MCMC works satisfactorily for simple setups, it mixes poorly for concentrated targets. Conversely, SG-MCMC requires differentiating the simulator model but improves performance over PM-MCMC when both work and scales to higher-dimensional setups as it is rejection-free. Although both techniques target the SR posterior approximately, the error diminishes as the number of model simulations at each MCMC step increases. In our simulations, we employ automatic differentiation to effortlessly differentiate the simulator model. We compare our posterior with related approaches on standard benchmarks and a chaotic dynamical system from meteorology, for which SG-MCMC allows inferring the parameters of a neural network used to parametrize a part of the update equations of the dynamical system.

Assessing causal effects in the presence of unmeasured confounding is a challenging problem. Although auxiliary variables, such as instrumental variables, are commonly used to identify causal effects, they are often unavailable in practice due to stringent and untestable conditions. To address this issue, previous researches have utilized linear structural equation models to show that the causal effect can be identifiable when noise variables of the treatment and outcome are both non-Gaussian. In this paper, we investigate the problem of identifying the causal effect using auxiliary covariates and non-Gaussianity from the treatment. Our key idea is to characterize the impact of unmeasured confounders using an observed covariate, assuming they are all Gaussian. The auxiliary covariate can be an invalid instrument or an invalid proxy variable. We demonstrate that the causal effect can be identified using this measured covariate, even when the only source of non-Gaussianity comes from the treatment. We then extend the identification results to the multi-treatment setting and provide sufficient conditions for identification. Based on our identification results, we propose a simple and efficient procedure for calculating causal effects and show the $\sqrt{n}$-consistency of the proposed estimator. Finally, we evaluate the performance of our estimator through simulation studies and an application.

Besov priors are nonparametric priors that model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

Data valuation is a powerful framework for providing statistical insights into which data are beneficial or detrimental to model training. Many Shapley-based data valuation methods have shown promising results in various downstream tasks, however, they are well known to be computationally challenging as it requires training a large number of models. As a result, it has been recognized as infeasible to apply to large datasets. To address this issue, we propose Data-OOB, a new data valuation method for a bagging model that utilizes the out-of-bag estimate. The proposed method is computationally efficient and can scale to millions of data by reusing trained weak learners. Specifically, Data-OOB takes less than 2.25 hours on a single CPU processor when there are $10^6$ samples to evaluate and the input dimension is 100. Furthermore, Data-OOB has solid theoretical interpretations in that it identifies the same important data point as the infinitesimal jackknife influence function when two different points are compared. We conduct comprehensive experiments using 12 classification datasets, each with thousands of sample sizes. We demonstrate that the proposed method significantly outperforms existing state-of-the-art data valuation methods in identifying mislabeled data and finding a set of helpful (or harmful) data points, highlighting the potential for applying data values in real-world applications.

The Naive Bayesian classifier is a popular classification method employing the Bayesian paradigm. The concept of having conditional dependence among input variables sounds good in theory but can lead to a majority vote style behaviour. Achieving conditional independence is often difficult, and they introduce decision biases in the estimates. In Naive Bayes, certain features are called independent features as they have no conditional correlation or dependency when predicting a classification. In this paper, we focus on the optimal partition of features by proposing a novel technique called the Comonotone-Independence Classifier (CIBer) which is able to overcome the challenges posed by the Naive Bayes method. For different datasets, we clearly demonstrate the efficacy of our technique, where we achieve lower error rates and higher or equivalent accuracy compared to models such as Random Forests and XGBoost.

We study the power of price discrimination via an intermediary in bilateral trade, when there is a revenue-maximizing seller selling an item to a buyer with a private value drawn from a prior. Between the seller and the buyer, there is an intermediary that can segment the market by releasing information about the true values to the seller. This is termed signaling, and enables the seller to price discriminate. In this setting, Bergemann et al. showed the existence of a signaling scheme that simultaneously raises the optimal consumer surplus, guarantees the item always sells, and ensures the seller's revenue does not increase. Our work extends the positive result of Bergemann et al. to settings where the type space is larger, and where optimal auction is randomized, possibly over a menu that can be exponentially large. In particular, we consider two settings motivated by budgets: The first is when there is a publicly known budget constraint on the price the seller can charge and the second is the FedEx problem where the buyer has a private deadline or service level (equivalently, a private budget that is guaranteed to never bind). For both settings, we present a novel signaling scheme and its analysis via a continuous construction process that recreates the optimal consumer surplus guarantee of Bergemann et al. The settings we consider are special cases of the more general problem where the buyer has a private budget constraint in addition to a private value. We finally show that our positive results do not extend to this more general setting. Here, we show that any efficient signaling scheme necessarily transfers almost all the surplus to the seller instead of the buyer.

In consensus clustering, a clustering algorithm is used in combination with a subsampling procedure to detect stable clusters. Previous studies on both simulated and real data suggest that consensus clustering outperforms native algorithms. We extend here consensus clustering to allow for attribute weighting in the calculation of pairwise distances using existing regularised approaches. We propose a procedure for the calibration of the number of clusters (and regularisation parameter) by maximising a novel consensus score calculated directly from consensus clustering outputs, making it extremely computationally competitive. Our simulation study shows better clustering performances of (i) models calibrated by maximising our consensus score compared to existing calibration scores, and (ii) weighted compared to unweighted approaches in the presence of features that do not contribute to cluster definition. Application on real gene expression data measured in lung tissue reveals clear clusters corresponding to different lung cancer subtypes. The R package sharp (version 1.4.0) is available on CRAN.

This paper presents an accelerated proximal gradient method for multiobjective optimization, in which each objective function is the sum of a continuously differentiable, convex function and a closed, proper, convex function. Extending first-order methods for multiobjective problems without scalarization has been widely studied, but providing accelerated methods with accurate proofs of convergence rates remains an open problem. Our proposed method is a multiobjective generalization of the accelerated proximal gradient method, also known as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), for scalar optimization. The key to this successful extension is solving a subproblem with terms exclusive to the multiobjective case. This approach allows us to demonstrate the global convergence rate of the proposed method ($O(1 / k^2)$), using a merit function to measure the complexity. Furthermore, we present an efficient way to solve the subproblem via its dual representation, and we confirm the validity of the proposed method through some numerical experiments.

The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司