亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spatial variables can be observed in many different forms, such as regularly sampled random fields (lattice data), point processes, and randomly sampled spatial processes. Joint analysis of such collections of observations is clearly desirable, but complicated by the lack of an easily implementable analysis framework. It is well known that Fourier transforms provide such a framework, but its form has eluded data analysts. We formalize it by providing a multitaper analysis framework using coupled discrete and continuous data tapers, combined with the discrete Fourier transform for inference. Using this set of tools is important, as it forms the backbone for practical spectral analysis. In higher dimensions it is important not to be constrained to Cartesian product domains, and so we develop the methodology for spectral analysis using irregular domain data tapers, and the tapered discrete Fourier transform. We discuss its fast implementation, and the asymptotic as well as large finite domain properties. Estimators of partial association between different spatial processes are provided as are principled methods to determine their significance, and we demonstrate their practical utility on a large-scale ecological dataset.

相關內容

The balanced incomplete block design (BIBD) problem is a difficult combinatorial problem with a large number of symmetries, which add complexity to its resolution. In this paper, we propose a dual (integer) problem representation that serves as an alternative to the classical binary formulation of the problem. We attack this problem incrementally: firstly, we propose basic algorithms (i.e. local search techniques and genetic algorithms) intended to work separately on the two different search spaces (i.e. binary and integer); secondly, we propose two hybrid schemes: an integrative approach (i.e. a memetic algorithm) and a collaborative model in which the previous methods work in parallel, occasionally exchanging information. Three distinct two-dimensional structures are proposed as communication topology among the algorithms involved in the collaborative model, as well as a number of migration and acceptance criteria for sending and receiving data. An empirical analysis comparing a large number of instances of our schemes (with algorithms possibly working on different search spaces and with/without symmetry breaking methods) shows that some of these algorithms can be considered the state of the art of the metaheuristic methods applied to finding BIBDs. Moreover, our cooperative proposal is a general scheme from which distinct algorithmic variants can be instantiated to handle symmetrical optimisation problems. For this reason, we have also analysed its key parameters, thereby providing general guidelines for the design of efficient/robust cooperative algorithms devised from our proposal.

The majority of fault-tolerant distributed algorithms are designed assuming a nominal corruption model, in which at most a fraction $f_n$ of parties can be corrupted by the adversary. However, due to the infamous Sybil attack, nominal models are not sufficient to express the trust assumptions in open (i.e., permissionless) settings. Instead, permissionless systems typically operate in a weighted model, where each participant is associated with a weight and the adversary can corrupt a set of parties holding at most a fraction $f_w$ of the total weight. In this paper, we suggest a simple way to transform a large class of protocols designed for the nominal model into the weighted model. To this end, we formalize and solve three novel optimization problems, which we collectively call the weight reduction problems, that allow us to map large real weights into small integer weights while preserving the properties necessary for the correctness of the protocols. In all cases, we manage to keep the sum of the integer weights to be at most linear in the number of parties, resulting in extremely efficient protocols for the weighted model. Moreover, we demonstrate that, on weight distributions that emerge in practice, the sum of the integer weights tends to be far from the theoretical worst case and, sometimes, even smaller than the number of participants. While, for some protocols, our transformation requires an arbitrarily small reduction in resilience (i.e., $f_w = f_n - \epsilon$), surprisingly, for many important problems, we manage to obtain weighted solutions with the same resilience ($f_w = f_n$) as nominal ones. Notable examples include erasure-coded distributed storage and broadcast protocols, verifiable secret sharing, and asynchronous consensus.

We consider a nonlocal functional equation that is a generalization of the mathematical model used in behavioral sciences. The equation is built upon an operator that introduces a convex combination and a nonlinear mixing of the function arguments. We show that, provided some growth conditions of the coefficients, there exists a unique solution in the natural Lipschitz space. Furthermore, we prove that the regularity of the solution is inherited from the smoothness properties of the coefficients. As a natural numerical method to solve the general case, we consider the collocation scheme of piecewise linear functions. We prove that the method converges with the error bounded by the error of projecting the Lipschitz function onto the piecewise linear polynomial space. Moreover, provided sufficient regularity of the coefficients, the scheme is of the second order measured in the supremum norm. A series of numerical experiments verify the proved claims and show that the implementation is computationally cheap and exceeds the frequently used Picard iteration by orders of magnitude in the calculation time.

We propose a tamed-adaptive Milstein scheme for stochastic differential equations in which the first-order derivatives of the coefficients are locally H\"older continuous of order $\alpha$. We show that the scheme converges in the $L_2$-norm with a rate of $(1+\alpha)/2$ over both finite intervals $[0, T]$ and the infinite interval $(0, +\infty)$, under certain growth conditions on the coefficients.

In recent years, denoising diffusion models have become a crucial area of research due to their abundance in the rapidly expanding field of generative AI. While recent statistical advances have delivered explanations for the generation ability of idealised denoising diffusion models for high-dimensional target data, implementations introduce thresholding procedures for the generating process to overcome issues arising from the unbounded state space of such models. This mismatch between theoretical design and implementation of diffusion models has been addressed empirically by using a \emph{reflected} diffusion process as the driver of noise instead. In this paper, we study statistical guarantees of these denoising reflected diffusion models. In particular, we establish minimax optimal rates of convergence in total variation, up to a polylogarithmic factor, under Sobolev smoothness assumptions. Our main contributions include the statistical analysis of this novel class of denoising reflected diffusion models and a refined score approximation method in both time and space, leveraging spectral decomposition and rigorous neural network analysis.

Aperiodic autocorrelation is an important indicator of performance of sequences used in communications, remote sensing, and scientific instrumentation. Knowing a sequence's autocorrelation function, which reports the autocorrelation at every possible translation, is equivalent to knowing the magnitude of the sequence's Fourier transform. The phase problem is the difficulty in resolving this lack of phase information. We say that two sequences are equicorrelational to mean that they have the same aperiodic autocorrelation function. Sequences used in technological applications often have restrictions on their terms: they are not arbitrary complex numbers, but come from a more restricted alphabet. For example, binary sequences involve terms equal to only $+1$ and $-1$. We investigate the necessary and sufficient conditions for two sequences to be equicorrelational, where we take their alphabet into consideration. There are trivial forms of equicorrelationality arising from modifications that predictably preserve the autocorrelation, for example, negating a binary sequence or reversing the order of its terms. By a search of binary sequences up to length $44$, we find that nontrivial equicorrelationality among binary sequences does occur, but is rare. An integer $n$ is said to be equivocal when there are binary sequences of length $n$ that are nontrivially equicorrelational; otherwise $n$ is unequivocal. For $n \leq 44$, we found that the unequivocal lengths are $1$--$8$, $10$, $11$, $13$, $14$, $19$, $22$, $23$, $26$, $29$, $37$, and $38$. We pose open questions about the finitude of unequivocal numbers and the probability of nontrivial equicorrelationality occurring among binary sequences.

Modelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unmixing transformation based on the observed data only. The current methods for spatio-temporal blind source separation are restricted to linear unmixing, and nonlinear variants have not been implemented. In this paper, we extend identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method.

We present accurate and mathematically consistent formulations of a diffuse-interface model for two-phase flow problems involving rapid evaporation. The model addresses challenges including discontinuities in the density field by several orders of magnitude, leading to high velocity and pressure jumps across the liquid-vapor interface, along with dynamically changing interface topologies. To this end, we integrate an incompressible Navier-Stokes solver combined with a conservative level-set formulation and a regularized, i.e., diffuse, representation of discontinuities into a matrix-free adaptive finite element framework. The achievements are three-fold: First, we propose mathematically consistent definitions for the level-set transport velocity in the diffuse interface region by extrapolating the velocity from the liquid or gas phase. They exhibit superior prediction accuracy for the evaporated mass and the resulting interface dynamics compared to a local velocity evaluation, especially for strongly curved interfaces. Second, we show that accurate prediction of the evaporation-induced pressure jump requires a consistent, namely a reciprocal, density interpolation across the interface, which satisfies local mass conservation. Third, the combination of diffuse interface models for evaporation with standard Stokes-type constitutive relations for viscous flows leads to significant pressure artifacts in the diffuse interface region. To mitigate these, we propose to introduce a correction term for such constitutive model types. Through selected analytical and numerical examples, the aforementioned properties are validated. The presented model promises new insights in simulation-based prediction of melt-vapor interactions in thermal multiphase flows such as in laser-based powder bed fusion of metals.

We propose new copula-based models for multivariate time series having continuous or discrete distributions, or a mixture of both. These models include stochastic volatility models and regime-switching models. We also propose statistics for testing independence between the generalized errors of these models, extending previous results of Duchesne, Ghoudi and Remillard (2012) obtained for stochastic volatility models. We define families of empirical processes constructed from lagged generalized errors, and we show that their joint asymptotic distributions are Gaussian and independent of the estimated parameters of the individual time series. Moebius transformations of the empirical processes are used to obtain tractable covariances. Several tests statistics are then proposed, based on Cramer-von Mises statistics and dependence measures, as well as graphical methods to visualize the dependence. In addition, numerical experiments are performed to assess the power of the proposed tests. Finally, to show the usefulness of our methodologies, examples of applications for financial data and crime data are given to cover both discrete and continuous cases. ll developed methodologies are implemented in the CRAN package IndGenErrors.

In the framework of a mixed finite element method, a structure-preserving formulation for incompressible MHD equations with general boundary conditions is proposed. A leapfrog-type temporal scheme fully decouples the fluid part from the Maxwell part by means of staggered discrete time sequences and, in doing so, partially linearizes the system. Conservation and dissipation properties of the formulation before and after the decoupling are analyzed. We demonstrate optimal spatial and second-order temporal error convergence and conservation and dissipation properties of the proposed method using manufactured solutions, and apply it to the benchmark Orszag-Tang and lid-driven cavity test cases.

北京阿比特科技有限公司