亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce an approach to designing FPGA-accelerated middleboxes that simplifies development, debugging, and performance tuning by decoupling the tasks of hardware accelerator implementation and software application programming. Shire is a framework that links hardware accelerators to a high-performance packet processing pipeline through a standardized hardware/software interface. This separation of concerns allows hardware developers to focus on optimizing custom accelerators while freeing software programmers to reuse, configure, and debug accelerators in a fashion akin to software libraries. We show the benefits of Shire framework by building a firewall based on a large blacklist and porting the Pigasus IDS pattern-matching accelerator in less than a month. Our experiments demonstrate Shire delivers high performance, serving ~200 Gbps of traffic while adding only 0.7-7 microseconds of latency.

相關內容

Photonic accelerators have been intensively studied to provide enhanced information processing capability to benefit from the unique attributes of physical processes. Recently, it has been reported that chaotically oscillating ultrafast time series from a laser, called laser chaos, provides the ability to solve multi-armed bandit (MAB) problems or decision-making problems at GHz order. Furthermore, it has been confirmed that the negatively correlated time-domain structure of laser chaos contributes to the acceleration of decision-making. However, the underlying mechanism of why decision-making is accelerated by correlated time series is unknown. In this paper, we demonstrate a theoretical model to account for the acceleration of decision-making by correlated time sequence. We first confirm the effectiveness of the negative autocorrelation inherent in time series for solving two-armed bandit problems using Fourier transform surrogate methods. We propose a theoretical model that concerns the correlated time series subjected to the decision-making system and the internal status of the system therein in a unified manner, inspired by correlated random walks. We demonstrate that the performance derived analytically by the theory agrees well with the numerical simulations, which confirms the validity of the proposed model and leads to optimal system design. The present study paves the new way for the effectiveness of correlated time series for decision-making, impacting artificial intelligence and other applications.

We study streaming algorithms in the white-box adversarial model, where the stream is chosen adaptively by an adversary who observes the entire internal state of the algorithm at each time step. We show that nontrivial algorithms are still possible. We first give a randomized algorithm for the $L_1$-heavy hitters problem that outperforms the optimal deterministic Misra-Gries algorithm on long streams. If the white-box adversary is computationally bounded, we use cryptographic techniques to reduce the memory of our $L_1$-heavy hitters algorithm even further and to design a number of additional algorithms for graph, string, and linear algebra problems. The existence of such algorithms is surprising, as the streaming algorithm does not even have a secret key in this model, i.e., its state is entirely known to the adversary. One algorithm we design is for estimating the number of distinct elements in a stream with insertions and deletions achieving a multiplicative approximation and sublinear space; such an algorithm is impossible for deterministic algorithms. We also give a general technique that translates any two-player deterministic communication lower bound to a lower bound for {\it randomized} algorithms robust to a white-box adversary. In particular, our results show that for all $p\ge 0$, there exists a constant $C_p>1$ such that any $C_p$-approximation algorithm for $F_p$ moment estimation in insertion-only streams with a white-box adversary requires $\Omega(n)$ space for a universe of size $n$. Similarly, there is a constant $C>1$ such that any $C$-approximation algorithm in an insertion-only stream for matrix rank requires $\Omega(n)$ space with a white-box adversary. Our algorithmic results based on cryptography thus show a separation between computationally bounded and unbounded adversaries. (Abstract shortened to meet arXiv limits.)

In the realm of unsupervised learning, Bayesian nonparametric mixture models, exemplified by the Dirichlet Process Mixture Model (DPMM), provide a principled approach for adapting the complexity of the model to the data. Such models are particularly useful in clustering tasks where the number of clusters is unknown. Despite their potential and mathematical elegance, however, DPMMs have yet to become a mainstream tool widely adopted by practitioners. This is arguably due to a misconception that these models scale poorly as well as the lack of high-performance (and user-friendly) software tools that can handle large datasets efficiently. In this paper we bridge this practical gap by proposing a new, easy-to-use, statistical software package for scalable DPMM inference. More concretely, we provide efficient and easily-modifiable implementations for high-performance distributed sampling-based inference in DPMMs where the user is free to choose between either a multiple-machine, multiple-core, CPU implementation (written in Julia) and a multiple-stream GPU implementation (written in CUDA/C++). Both the CPU and GPU implementations come with a common (and optional) python wrapper, providing the user with a single point of entry with the same interface. On the algorithmic side, our implementations leverage a leading DPMM sampler from (Chang and Fisher III, 2013). While Chang and Fisher III's implementation (written in MATLAB/C++) used only CPU and was designed for a single multi-core machine, the packages we proposed here distribute the computations efficiently across either multiple multi-core machines or across mutiple GPU streams. This leads to speedups, alleviates memory and storage limitations, and lets us fit DPMMs to significantly larger datasets and of higher dimensionality than was possible previously by either (Chang and Fisher III, 2013) or other DPMM methods.

Machine learning and computational intelligence technologies gain more and more popularity as possible solution for issues related to the power grid. One of these issues, the power flow calculation, is an iterative method to compute the voltage magnitudes of the power grid's buses from power values. Machine learning and, especially, artificial neural networks were successfully used as surrogates for the power flow calculation. Artificial neural networks highly rely on the quality and size of the training data, but this aspect of the process is apparently often neglected in the works we found. However, since the availability of high quality historical data for power grids is limited, we propose the Correlation Sampling algorithm. We show that this approach is able to cover a larger area of the sampling space compared to different random sampling algorithms from the literature and a copula-based approach, while at the same time inter-dependencies of the inputs are taken into account, which, from the other algorithms, only the copula-based approach does.

The past few years have witnessed an increasing interest in improving the perception performance of LiDARs on autonomous vehicles. While most of the existing works focus on developing new deep learning algorithms or model architectures, we study the problem from the physical design perspective, i.e., how different placements of multiple LiDARs influence the learning-based perception. To this end, we introduce an easy-to-compute information-theoretic surrogate metric to quantitatively and fast evaluate LiDAR placement for 3D detection of different types of objects. We also present a new data collection, detection model training and evaluation framework in the realistic CARLA simulator to evaluate disparate multi-LiDAR configurations. Using several prevalent placements inspired by the designs of self-driving companies, we show the correlation between our surrogate metric and object detection performance of different representative algorithms on KITTI through extensive experiments, validating the effectiveness of our LiDAR placement evaluation approach. Our results show that sensor placement is non-negligible in 3D point cloud-based object detection, which will contribute up to 10% performance discrepancy in terms of average precision in challenging 3D object detection settings. We believe that this is one of the first studies to quantitatively investigate the influence of LiDAR placement on perception performance.

We introduce a restriction of the classical 2-party deterministic communication protocol where Alice and Bob are restricted to using only comparison functions. We show that the complexity of a function in the model is, up to a constant factor, determined by a complexity measure analogous to Yao's tiling number, which we call the geometric tiling number which can be computed in polynomial time. As a warm-up, we consider an analogous restricted decision tree model and observe a 1-dimensional analog of the above results.

Federated Learning has promised a new approach to resolve the challenges in machine learning by bringing computation to the data. The popularity of the approach has led to rapid progress in the algorithmic aspects and the emergence of systems capable of simulating Federated Learning. State of art systems in Federated Learning support a single node aggregator that is insufficient to train a large corpus of devices or train larger-sized models. As the model size or the number of devices increase the single node aggregator incurs memory and computation burden while performing fusion tasks. It also faces communication bottlenecks when a large number of model updates are sent to a single node. We classify the workload for the aggregator into categories and propose a new aggregation service for handling each load. Our aggregation service is based on a holistic approach that chooses the best solution depending on the model update size and the number of clients. Our system provides a fault-tolerant, robust and efficient aggregation solution utilizing existing parallel and distributed frameworks. Through evaluation, we show the shortcomings of the state of art approaches and how a single solution is not suitable for all aggregation requirements. We also provide a comparison of current frameworks with our system through extensive experiments.

Requirements engineering (RE) activities for Machine Learning (ML) are not well-established and researched in the literature. Many issues and challenges exist when specifying, designing, and developing ML-enabled systems. Adding more focus on RE for ML can help to develop more reliable ML-enabled systems. Based on insights collected from previous work and industrial experiences, we propose a catalogue of 45 concerns to be considered when specifying ML-enabled systems, covering five different perspectives we identified as relevant for such systems: objectives, user experience, infrastructure, model, and data. Examples of such concerns include the execution engine and telemetry for the infrastructure perspective, and explainability and reproducibility for the model perspective. We conducted a focus group session with eight software professionals with experience developing ML-enabled systems to validate the importance, quality and feasibility of using our catalogue. The feedback allowed us to improve the catalogue and confirmed its practical relevance. The main research contribution of this work consists in providing a validated set of concerns grouped into perspectives that can be used by requirements engineers to support the specification of ML-enabled systems.

This paper presents a novel circuit (AID) to improve the accuracy of an energy-efficient in-memory multiplier using a standard 6T-SRAM. The state-of-the-art discharge-based in-SRAM multiplication accelerators suffer from a non-linear behavior in their bit-line (BL, BLB) due to the quadratic nature of the access transistor that leads to a poor signal-to-noise ratio (SNR). In order to achieve linearity in the BLB voltage, we propose a novel root function technique on the access transistor's gate that results in accuracy improvement of on average 10.77 dB SNR compared to state-of-the-art discharge-based topologies. Our analytical methods and a circuit simulation in a 65 nm CMOS technology verify that the proposed technique consumes 0.523 pJ per computation (multiplication, accumulation, and preset) from a power supply of 1V, which is 51.18% lower compared to other state-of-the-art techniques. We have performed an extensive Monte Carlo based simulation for a 4x4 multiplication operation, and our novel technique presents less than 0.086 standard deviations for the worst-case incorrect output scenario.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

北京阿比特科技有限公司